scispace - formally typeset
Search or ask a question
Author

John Daugman

Other affiliations: Harvard University, Morpho
Bio: John Daugman is an academic researcher from University of Cambridge. The author has contributed to research in topics: Iris recognition & Biometrics. The author has an hindex of 38, co-authored 64 publications receiving 22561 citations. Previous affiliations of John Daugman include Harvard University & Morpho.


Papers
More filters
Journal ArticleDOI
TL;DR: A method for rapid visual recognition of personal identity is described, based on the failure of a statistical test of independence, which implies a theoretical "cross-over" error rate of one in 131000 when a decision criterion is adopted that would equalize the false accept and false reject error rates.
Abstract: A method for rapid visual recognition of personal identity is described, based on the failure of a statistical test of independence. The most unique phenotypic feature visible in a person's face is the detailed texture of each eye's iris. The visible texture of a person's iris in a real-time video image is encoded into a compact sequence of multi-scale quadrature 2-D Gabor wavelet coefficients, whose most-significant bits comprise a 256-byte "iris code". Statistical decision theory generates identification decisions from Exclusive-OR comparisons of complete iris codes at the rate of 4000 per second, including calculation of decision confidence levels. The distributions observed empirically in such comparisons imply a theoretical "cross-over" error rate of one in 131000 when a decision criterion is adopted that would equalize the false accept and false reject error rates. In the typical recognition case, given the mean observed degree of iris code agreement, the decision confidence levels correspond formally to a conditional false accept probability of one in about 10/sup 31/. >

3,399 citations

Journal ArticleDOI
John Daugman1
TL;DR: Evidence is presented that the 2D receptive-field profiles of simple cells in mammalian visual cortex are well described by members of this optimal 2D filter family, and thus such visual neurons could be said to optimize the general uncertainty relations for joint 2D-spatial-2D-spectral information resolution.
Abstract: Two-dimensional spatial linear filters are constrained by general uncertainty relations that limit their attainable information resolution for orientation, spatial frequency, and two-dimensional (2D) spatial position. The theoretical lower limit for the joint entropy, or uncertainty, of these variables is achieved by an optimal 2D filter family whose spatial weighting functions are generated by exponentiated bivariate second-order polynomials with complex coefficients, the elliptic generalization of the one-dimensional elementary functions proposed in Gabor’s famous theory of communication [ J. Inst. Electr. Eng.93, 429 ( 1946)]. The set includes filters with various orientation bandwidths, spatial-frequency bandwidths, and spatial dimensions, favoring the extraction of various kinds of information from an image. Each such filter occupies an irreducible quantal volume (corresponding to an independent datum) in a four-dimensional information hyperspace whose axes are interpretable as 2D visual space, orientation, and spatial frequency, and thus such a filter set could subserve an optimally efficient sampling of these variables. Evidence is presented that the 2D receptive-field profiles of simple cells in mammalian visual cortex are well described by members of this optimal 2D filter family, and thus such visual neurons could be said to optimize the general uncertainty relations for joint 2D-spatial–2D-spectral information resolution. The variety of their receptive-field dimensions and orientation and spatial-frequency bandwidths, and the correlations among these, reveal several underlying constraints, particularly in width/length aspect ratio and principal axis organization, suggesting a polar division of labor in occupying the quantal volumes of information hyperspace. Such an ensemble of 2D neural receptive fields in visual cortex could locally embed coarse polar mappings of the orientation–frequency plane piecewise within the global retinotopic mapping of visual space, thus efficiently representing 2D spatial visual information by localized 2D spectral signatures.

3,392 citations

Journal ArticleDOI
TL;DR: Algorithms developed by the author for recognizing persons by their iris patterns have now been tested in many field and laboratory trials, producing no false matches in several million comparison tests.
Abstract: Algorithms developed by the author for recognizing persons by their iris patterns have now been tested in many field and laboratory trials, producing no false matches in several million comparison tests. The recognition principle is the failure of a test of statistical independence on iris phase structure encoded by multi-scale quadrature wavelets. The combinatorial complexity of this phase information across different persons spans about 249 degrees of freedom and generates a discrimination entropy of about 3.2 b/mm/sup 2/ over the iris, enabling real-time decisions about personal identity with extremely high confidence. The high confidence levels are important because they allow very large databases to be searched exhaustively (one-to-many "identification mode") without making false matches, despite so many chances. Biometrics that lack this property can only survive one-to-one ("verification") or few comparisons. The paper explains the iris recognition algorithms and presents results of 9.1 million comparisons among eye images from trials in Britain, the USA, Japan, and Korea.

2,829 citations

Proceedings ArticleDOI
10 Dec 2002
TL;DR: Algorithms developed by the author for recognizing persons by their iris patterns have now been tested in many field and laboratory trials, producing no false matches in several million comparison tests.
Abstract: The principle that underlies the recognition of persons by their iris patterns is the failure of a test of statistical independence on texture phase structure as encoded by multiscale quadrature wavelets. The combinatorial complexity of this phase information across different persons spans about 249 degrees of freedom and generates a discrimination entropy of about 3.2 bits/mm/sup 2/ over the iris, enabling real-time decisions about personal identity with extremely high confidence. Algorithms first described by the author in 1993 have now been tested in several independent field trials and are becoming widely licensed. This presentation reviews how the algorithms work and presents the results of 9.1 million comparisons among different eye images acquired in trials in Britain, the USA, Korea, and Japan.

2,437 citations

Journal ArticleDOI
John Daugman1
TL;DR: A three-layered neural network based on interlaminar interactions involving two layers with fixed weights and one layer with adjustable weights finds coefficients for complete conjoint 2-D Gabor transforms without restrictive conditions for image analysis, segmentation, and compression.
Abstract: A three-layered neural network is described for transforming two-dimensional discrete signals into generalized nonorthogonal 2-D Gabor representations for image analysis, segmentation, and compression. These transforms are conjoint spatial/spectral representations, which provide a complete image description in terms of locally windowed 2-D spectral coordinates embedded within global 2-D spatial coordinates. In the present neural network approach, based on interlaminar interactions involving two layers with fixed weights and one layer with adjustable weights, the network finds coefficients for complete conjoint 2-D Gabor transforms without restrictive conditions. In wavelet expansions based on a biologically inspired log-polar ensemble of dilations, rotations, and translations of a single underlying 2-D Gabor wavelet template, image compression is illustrated with ratios up to 20:1. Also demonstrated is image segmentation based on the clustering of coefficients in the complete 2-D Gabor transform. >

1,977 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, it is shown that the difference of information between the approximation of a signal at the resolutions 2/sup j+1/ and 2 /sup j/ (where j is an integer) can be extracted by decomposing this signal on a wavelet orthonormal basis of L/sup 2/(R/sup n/), the vector space of measurable, square-integrable n-dimensional functions.
Abstract: Multiresolution representations are effective for analyzing the information content of images. The properties of the operator which approximates a signal at a given resolution were studied. It is shown that the difference of information between the approximation of a signal at the resolutions 2/sup j+1/ and 2/sup j/ (where j is an integer) can be extracted by decomposing this signal on a wavelet orthonormal basis of L/sup 2/(R/sup n/), the vector space of measurable, square-integrable n-dimensional functions. In L/sup 2/(R), a wavelet orthonormal basis is a family of functions which is built by dilating and translating a unique function psi (x). This decomposition defines an orthogonal multiresolution representation called a wavelet representation. It is computed with a pyramidal algorithm based on convolutions with quadrature mirror filters. Wavelet representation lies between the spatial and Fourier domains. For images, the wavelet representation differentiates several spatial orientations. The application of this representation to data compression in image coding, texture discrimination and fractal analysis is discussed. >

20,028 citations

Book
01 Jan 1998
TL;DR: An introduction to a Transient World and an Approximation Tour of Wavelet Packet and Local Cosine Bases.
Abstract: Introduction to a Transient World. Fourier Kingdom. Discrete Revolution. Time Meets Frequency. Frames. Wavelet Zoom. Wavelet Bases. Wavelet Packet and Local Cosine Bases. An Approximation Tour. Estimations are Approximations. Transform Coding. Appendix A: Mathematical Complements. Appendix B: Software Toolboxes.

17,693 citations

Journal ArticleDOI
13 Jun 1996-Nature
TL;DR: It is shown that a learning algorithm that attempts to find sparse linear codes for natural scenes will develop a complete family of localized, oriented, bandpass receptive fields, similar to those found in the primary visual cortex.
Abstract: The receptive fields of simple cells in mammalian primary visual cortex can be characterized as being spatially localized, oriented and bandpass (selective to structure at different spatial scales), comparable to the basis functions of wavelet transforms. One approach to understanding such response properties of visual neurons has been to consider their relationship to the statistical structure of natural images in terms of efficient coding. Along these lines, a number of studies have attempted to train unsupervised learning algorithms on natural images in the hope of developing receptive fields with similar properties, but none has succeeded in producing a full set that spans the image space and contains all three of the above properties. Here we investigate the proposal that a coding strategy that maximizes sparseness is sufficient to account for these properties. We show that a learning algorithm that attempts to find sparse linear codes for natural scenes will develop a complete family of localized, oriented, bandpass receptive fields, similar to those found in the primary visual cortex. The resulting sparse image code provides a more efficient representation for later stages of processing because it possesses a higher degree of statistical independence among its outputs.

5,947 citations

Journal ArticleDOI
TL;DR: A brief overview of the field of biometrics is given and some of its advantages, disadvantages, strengths, limitations, and related privacy concerns are summarized.
Abstract: A wide variety of systems requires reliable personal recognition schemes to either confirm or determine the identity of an individual requesting their services. The purpose of such schemes is to ensure that the rendered services are accessed only by a legitimate user and no one else. Examples of such applications include secure access to buildings, computer systems, laptops, cellular phones, and ATMs. In the absence of robust personal recognition schemes, these systems are vulnerable to the wiles of an impostor. Biometric recognition, or, simply, biometrics, refers to the automatic recognition of individuals based on their physiological and/or behavioral characteristics. By using biometrics, it is possible to confirm or establish an individual's identity based on "who she is", rather than by "what she possesses" (e.g., an ID card) or "what she remembers" (e.g., a password). We give a brief overview of the field of biometrics and summarize some of its advantages, disadvantages, strengths, limitations, and related privacy concerns.

4,678 citations

Journal ArticleDOI
TL;DR: This paper investigates the properties of a metric between two distributions, the Earth Mover's Distance (EMD), for content-based image retrieval, and compares the retrieval performance of the EMD with that of other distances.
Abstract: We investigate the properties of a metric between two distributions, the Earth Mover's Distance (EMD), for content-based image retrieval. The EMD is based on the minimal cost that must be paid to transform one distribution into the other, in a precise sense, and was first proposed for certain vision problems by Peleg, Werman, and Rom. For image retrieval, we combine this idea with a representation scheme for distributions that is based on vector quantization. This combination leads to an image comparison framework that often accounts for perceptual similarity better than other previously proposed methods. The EMD is based on a solution to the transportation problem from linear optimization, for which efficient algorithms are available, and also allows naturally for partial matching. It is more robust than histogram matching techniques, in that it can operate on variable-length representations of the distributions that avoid quantization and other binning problems typical of histograms. When used to compare distributions with the same overall mass, the EMD is a true metric. In this paper we focus on applications to color and texture, and we compare the retrieval performance of the EMD with that of other distances.

4,593 citations