scispace - formally typeset
Search or ask a question
Author

John Elmerdahl Olsen

Bio: John Elmerdahl Olsen is an academic researcher from University of Copenhagen. The author has contributed to research in topics: Salmonella & Salmonella enterica. The author has an hindex of 54, co-authored 319 publications receiving 10055 citations. Previous affiliations of John Elmerdahl Olsen include Sokoine University of Agriculture & Technical University of Denmark.


Papers
More filters
Journal ArticleDOI
TL;DR: It is hoped that an appreciation of the differences that exist in the way these host-adapted serotypes of Salmonella interact with the host will lead to a greater understanding of the complex host–parasite relationship that characterizes salmonella infections.
Abstract: Salmonella constitutes a genus of zoonotic bacteria of worldwide economic and health importance. The current view of salmonella taxonomy assigns the members of this genus to two species: S. enterica and S. bongori. S. enterica itself is divided into six subspecies, enterica , salamae , arizonae , diarizonae , indica , and houtenae , also known as subspecies I, II, IIIa, IIIb, IV, and VI, respectively. Members of Salmonella enterica subspecies enterica are mainly associated with warm-blooded vertebrates and are usually transmitted by ingestion of food or water contaminated by infected faeces. The pathogenicity of most of the distinct serotypes remains undefined, and even within the most common serotypes, many questions remain to be answered regarding the interactions between the organism and the infected host. Salmonellosis manifests itself in three major forms: enteritis, septicaemia, and abortion, each of which may be present singly or in combination, depending on both the serotype and the host involved. Although currently over 2300 serovars of Salmonella are recognized, only about 50 serotypes are isolated in any significant numbers as human or animal pathogens and they all belong to subspecies enterica . Of these, most cause acute gastroenteritis characterized by a short incubation period and a severe systemic disease in man or animals, characterized by septicaemia, fever and/or abortion, and such serotypes are often associated with one or few host species. It is the intention of this review to present a summary of current knowledge of these host-adapted serotypes of S. enterica . The taxonomic relationships between the serotypes will be discussed together with a comparison of the pathology and pathogenesis of the disease that they cause in their natural host(s). Since much of our knowledge on salmonellosis is based on the results of work on Typhimurium, this serotype will often be used as the baseline in discussion. It is hoped that an appreciation of the differences that exist in the way these serotypes interact with the host will lead to a greater understanding of the complex host–parasite relationship that characterizes salmonella infections.

459 citations

Journal ArticleDOI
TL;DR: Based on the polyphasic investigation performed a new genus Mannheimia is proposed for the trehalose-negative [P.] haemolytica complex, and two previously named species are transferred to this new genus and three new species are described.
Abstract: The present paper presents the conclusions of a polyphasic investigation of the taxonomy of the trehalose-negative [Pasteurella] Haemolytica complex. Clusters previously identified by ribotyping and multilocus enzyme electrophoresis (MEE) have been evaluated by 16S rRNA sequencing and DNA-DNA hybridizations. Results obtained by the different techniques were highly related and indicated that the [P.] haemolytica complex contains distinct genetic and phenotypic groups. At least seven species were outlined, five of which were named. We refrained in formal naming of more groups until additional strains are characterized. Five 16S rRNA clusters were identified corresponding to distinct lineages previously outlined by MEE. Within 16S rRNA cluster I two distinct genotypic groups have been outlined in addition to [P.] haemolytica sensu stricto (biogroup 1). Each of the clusters II, III, IV and V represent at least one new species. The investigations underline that [P.] haemolytica sensu stricto only contains strains that do not ferment L-arabinose even though they are referred to as ‘biotype A’ of [P.] haemolytica. The five 16S rRNA clusters identified had a common root relative to the other species within the family Pasteurellaceae, and the overall sequence similarity among these five clusters was higher than what is observed within the existing genera of the family. The allocation of the trehalose-negative [P.] haemolytica complex to a new genus seems to be indicated. Based on the polyphasic investigation performed a new genus Mannheimia is proposed for the trehalose-negative [P.] haemolytica complex. At the present stage two previously named species are transferred to this new genus and three new species are described. [P.] haemolytica is reclassified as Mannheimia haemolytica comb. nov., whereas Pasteurella granulomatis, Bisgaard taxon 20 and [P.] haemolytica biovar 3J are reclassified and combined in the species Mannheimia granulomatis comb. nov. Mannheimia glucosida sp. nov.

245 citations

Journal ArticleDOI
TL;DR: Investigation of the possible increase of antibiotic-resistant bacteria in sewage associated with the discharge of wastewater from a hospital and a pharmaceutical plant found an increase in the prevalence of both single- and multiple-antibiotic resistance among Acinetobacter species in the sewers.
Abstract: The possible increase of antibiotic-resistant bacteria in sewage associated with the discharge of wastewater from a hospital and a pharmaceutical plant was investigated by using Acinetobacter species as environmental bacterial indicators. The level of susceptibility to six antimicrobial agents was determined in 385 Acinetobacter strains isolated from samples collected upstream and downstream from the discharge points of the hospital and the pharmaceutical plant. Results indicated that while the hospital waste effluent affected only the prevalence of oxytetracycline resistance, the discharge of wastewater from the pharmaceutical plant was associated with an increase in the prevalence of both single- and multiple-antibiotic resistance among Acinetobacter species in the sewers.

244 citations

Journal ArticleDOI
TL;DR: With the combined use of four genotypic methods, two groups of strains, representing eight and seven of 33 Enteritidis phage types, were formed; these two groups may be considered as the main evolutionary lines of Enter itidis.
Abstract: Surmmary Sixty-two selected strains of Salmonella serotype Enteritidis of 33 phage types (PTs), and one strain classified as RDNC, were characterised by four different chromosomally based typing methods to elucidate genetic relationships among strains of different phage types. Based on IS200-hybridisation patterns, two major groups, containing strains of the most commonly encountered phage types, and six minor groups (seven with the RDNC strain included) were observed. IS200 pattern was a stable epidemiological marker in strains of all phage types except PT 6a and 14b. Ribotyping separated strains of the phage types into one major and five minor groups; the pattern of the RDNC strain was not seen with other strains. More than one ribotype was observed among strains of Enteritidis PTs 6, 7, 14b and 21. By pulsed-field gel electrophoresis, strains of 21 of the 33 phage types formed one large cluster when bands > 125 kb were used as the criterion for separation. Among strains belonging to PTs 1, 6, 7 and 14b, more than one pattern was observed by this method. By probing with five random cloned fragments of the Enteritidis chromosome, strains from 27 of 31 phage types examined showed the same hybridisation pattern. With the combined use of four genotypic methods, two groups of strains, representing eight and seven of 33 Enteritidis phage types, were formed; these two groups may be considered as the main evolutionary lines of Enteritidis. Strains of the remaining phage types, and the RDNC strain, belonged to separate groups.

226 citations

Journal ArticleDOI
TL;DR: There was a complete correspondence among the groups of strains formed according to the analysis of the flaA, iap and hly genes, and the grouping correlates with serotype, pulsed field gel electrophoretic and multilocus enzyme electrophoreic data.
Abstract: Regions of the genes encoding flagellin (flaA), the invasive associated protein (iap), listeriolysin O (hly) and 23S rRNA were sequenced for a range of Listeria monocytogenes isolates of different origin and serotypes. Several nucleotide sequence variations were found in the flaA, iap and hly genes. No differences were found for the rRNA genes, but our approach does not exclude the existence of differences between single copies of these genes. Based on the sequence differences, the L. monocytogenes strains can be divided into three distinct sequence types. Further, the presence of only a small number of sequence differences within each group indicates a strong degree of conservation within the groups. There was a complete correspondence among the groups of strains formed according to the analysis of the flaA, iap and hly genes, and the grouping correlates with serotype, pulsed field gel electrophoretic and multilocus enzyme electrophoretic data. Analysis of the region encoding the threonine-asparagine repeat units in the iap gene revealed some striking features. Sequence type 1 strains were found to have 16-17 repeats, sequence type 2 strains had 16-20 repeats whereas the two sequence type 3 strains analysed had only 11 repeats. Furthermore, within a 19 bp segment there was a 37% difference between the sequences of type 1 and 2 strains and that segment was absent in type 3 strains. Within the threonine-asparagine repeat region the nucleotide differences gave rise to four amino acid changes; however, all were changes among the three amino acids present in the repeat structure indicating a strong selective pressure on the composition of this region.

204 citations


Cited by
More filters
01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
TL;DR: This research presents a novel, scalable and scalable approach that allows for real-time assessment of the severity of the infection and its impact on patients’ health.
Abstract: FRED C. TENOVER,* ROBERT D. ARBEIT, RICHARD V. GOERING, PATRICIA A. MICKELSEN, BARBARA E. MURRAY, DAVID H. PERSING, AND BALA SWAMINATHAN National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333; Veterans Affairs Medical Center, Boston, Massachusetts 02130; Creighton University, Omaha, Nebraska 68178; Stanford University Medical Center, Stanford, California 94305; University of Texas Medical School, Houston, Texas 77030; and Mayo Clinic, Rochester, Minnesota 55905

7,784 citations

Journal ArticleDOI
TL;DR: This review brings up important questions that are still open, and addresses some significant issues which must be tackled in the future for a better understanding of the behavior of antibiotics in the environment, as well as the risks associated with their occurrence.

3,620 citations

Journal ArticleDOI
TL;DR: It is concluded that ANI can accurately replace DDH values for strains for which genome sequences are available and reveal extensive gene diversity within the current concept of "species".
Abstract: DNA-DNA hybridization (DDH) values have been used by bacterial taxonomists since the 1960s to determine relatedness between strains and are still the most important criterion in the delineation of bacterial species. Since the extent of hybridization between a pair of strains is ultimately governed by their respective genomic sequences, we examined the quantitative relationship between DDH values and genome sequence-derived parameters, such as the average nucleotide identity (ANI) of common genes and the percentage of conserved DNA. A total of 124 DDH values were determined for 28 strains for which genome sequences were available. The strains belong to six important and diverse groups of bacteria for which the intra-group 16S rRNA gene sequence identity was greater than 94 %. The results revealed a close relationship between DDH values and ANI and between DNA-DNA hybridization and the percentage of conserved DNA for each pair of strains. The recommended cut-off point of 70 % DDH for species delineation corresponded to 95 % ANI and 69 % conserved DNA. When the analysis was restricted to the protein-coding portion of the genome, 70 % DDH corresponded to 85 % conserved genes for a pair of strains. These results reveal extensive gene diversity within the current concept of "species". Examination of reciprocal values indicated that the level of experimental error associated with the DDH method is too high to reveal the subtle differences in genome size among the strains sampled. It is concluded that ANI can accurately replace DDH values for strains for which genome sequences are available.

3,471 citations