scispace - formally typeset
Search or ask a question
Author

John Eric Mentzell

Other affiliations: University of Arizona
Bio: John Eric Mentzell is an academic researcher from Goddard Space Flight Center. The author has contributed to research in topics: Telescope & Interferometry. The author has an hindex of 12, co-authored 31 publications receiving 3829 citations. Previous affiliations of John Eric Mentzell include University of Arizona.

Papers
More filters
Journal ArticleDOI
TL;DR: The Infrared Array Camera (IRAC) is one of three focal plane instruments on the Spitzer Space Telescope as mentioned in this paper, which is a four-channel camera that obtains simultaneous broadband images at 3.6, 4.5, 5.8, and 8.0 m.
Abstract: The Infrared Array Camera (IRAC) is one of three focal plane instruments on the Spitzer Space Telescope. IRAC is a four-channel camera that obtains simultaneous broadband images at 3.6, 4.5, 5.8, and 8.0 � m. Two nearly adjacent 5A2 ; 5A2 fields of view in the focal plane are viewed by the four channels in pairs (3.6 and 5.8 � m; 4.5 and 8 � m). All four detector arrays in the camera are 256 ; 256 pixels in size, with the two shorter wavelength channels using InSb and the two longer wavelength channels using Si:As IBC detectors. IRAC is a powerful survey instrument because of its high sensitivity, large field of view, and four-color imaging. This paper summarizes the in-flight scientific, technical, and operational performance of IRAC.

3,567 citations

Proceedings ArticleDOI
TL;DR: In this paper, the authors summarize the in-flight scientific, technical, and operational performance of IRAC in two nearly adjacent fields of view on the Spitzer Space Telescope (SST) and show that IRAC is a four-channel camera that obtains simultaneous broad-band images at 3.6, 4.5, 5.8, and 8.0 μm.
Abstract: The Infrared Array Camera (IRAC) is one of three focal plane instruments on board the Spitzer Space Telescope. IRAC is a four-channel camera that obtains simultaneous broad-band images at 3.6, 4.5, 5.8, and 8.0 μm in two nearly adjacent fields of view. We summarize here the in-flight scientific, technical, and operational performance of IRAC.

148 citations

Proceedings ArticleDOI
TL;DR: The inner Coronal and Heliospheric Investigation (COR1) as discussed by the authors is a Lyot internally occulting refractive coronagraph, adapted for the first time to be used in space.
Abstract: The Solar Terrestrial Relations Observatory (STEREO) is a pair of identical satellites that will orbit the Sun so as to drift ahead of and behind Earth respectively, to give a stereo view of the Sun. STEREO is currently scheduled for launch in November 2005. One of the instrument packages that will be flown on each of the STEREO spacecrafts is the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI), which consists of an extreme ultraviolet imager, two coronagraphs, and two side-viewing heliospheric imagers to observe solar coronal mass ejections all the way from the Sun to Earth. We report here on the inner coronagraph, labeled COR1. COR1 is a classic Lyot internally occulting refractive coronagraph, adapted for the first time to be used in space. The field of view is from 1.3 to 4 solar radii. A linear polarizer is used to suppress scattered light, and to extract the polarized brightness signal from the solar corona. The optical scattering performance of the coronagraph was first modeled using both the ASAP and APART numerical modeling codes, and then tested at the Vacuum Tunnel Facility at the National Center for Atmospheric Research in Boulder, Colorado. In this report, we will focus on the COR1 optical design, the predicted optical performance, and the observed performance in the lab. We will also discuss the mechanical and thermal design, and the cleanliness requirements needed to achieve the optical performance.

102 citations

Proceedings ArticleDOI
01 Nov 2002
TL;DR: In this paper, the authors present a test program designed to empirically determine the best stress relief procedure for the IRMOS mirrors, which are tested for figure error at room temperature and at ~80 K for three thermal cycles.
Abstract: The Infrared Multi-Object Spectrograph is a facility instrument for the KPNO Mayall Telescope. IRMOS is a low- to mid-resolution, near-IR (0.8-2.5 um) spectrograph that produces simultaneous spectra of ~100 objects in its 2.8 × 2.0 arcmin field of view. The instrument operating temperature is ~80 K and the design is athermal. The bench and mirrors are machined from Al 6061-T651. In spite of its baseline mechanical stress relief, Al 6061-T651 harbors residual stress, which, unless relieved during fabrication, may distort mirror figure to unacceptable levels at the operating temperature (~80 K). Other cryogenic, astronomy instruments using Al mirrors have employed a variety of heat treatment formulae, with mixed results. We present the results of a test program designed to empirically determine the best stress relief procedure for the IRMOS mirrors. Identical test mirrors are processed with six different stress relief formulae from the literature and institutional heritage. After figuring via diamond turning, the mirrors are tested for figure error at room temperature and at ~80 K for three thermal cycles. The heat treatment procedure for the mirrors that yielded the least and most repeatable change in figure error is applied to the IRMOS mirror blanks. We correlate the results of our optical testing with heat treatment and metallographic data.

29 citations

Proceedings ArticleDOI
TL;DR: In this article, the design and diamond machining of seven aluminum mirrors were described for the Infrared Multi-Object Spectrometer instrument, a facility instrument for the Kitt Peak National Observatory's Mayall Telescope (3.8 m) and a pathfinder for the future Next Generation Space Telescope multi-object spectrograph.
Abstract: Challenges in fabrication and testing have historically limited the choice of surfaces available for the design of reflective optical instruments. Spherical and conic mirrors are common, but, for future science instruments, more degrees of freedom will be necessary to meet performance and packaging requirements. These instruments will be composed of surfaces of revolution located far off-axis with large spherical departure, and some designs will even require asymmetric surface profiles. We describe the design and diamond machining of seven aluminum mirrors: three rotationally symmetric, off-axis conic sections, one off-axis biconic, and three flat mirror designs. These mirrors are for the Infrared Multi-Object Spectrometer instrument, a facility instrument for the Kitt Peak National Observatory’s Mayall Telescope (3.8 m) and a pathfinder for the future Next Generation Space Telescope multi-object spectrograph. The symmetric mirrors include convex and concave prolate and oblate ellipsoids, and range in aperture from 92 x 77 mm to 284 x 264 mm and in f-number from 0.9 to 2.4. The biconic mirror is concave and has a 94 x 76 mm aperture, (formula available in paper) and is decentered by -2 mm in x and 227 mm in y. The mirrors have an aspect ratio of approximately 6:1. The fabrication tolerances for surface error are < 63.3 nm RMS figure error and < 10 nm RMS microroughness. The mirrors are attached to the instrument bench using semi-kinematic, integral flexure mounts and optomechanically aligned to the instrument coordinate system using fiducial marks and datum surfaces. We also describe in-process profilometry and optical testing.

25 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Spitzer Space Telescope, NASA's great Observatory for infrared astronomy, was launched 2003 August 25 and is returning excellent scientific data from its Earth-trailing solar orbit as mentioned in this paper.
Abstract: The Spitzer Space Telescope, NASA's Great Observatory for infrared astronomy, was launched 2003 August 25 and is returning excellent scientific data from its Earth-trailing solar orbit. Spitzer combines the intrinsic sensitivity achievable with a cryogenic telescope in space with the great imaging and spectroscopic power of modern detector arrays to provide the user community with huge gains in capability for exploration of the cosmos in the infrared. The observatory systems are largely performing as expected, and the projected cryogenic lifetime is in excess of 5 years. This paper summarizes the on-orbit scientific, technical, and operational performance of Spitzer. Subsequent papers in this special issue describe the Spitzer instruments in detail and highlight many of the exciting scientific results obtained during the first 6 months of the Spitzer mission.

3,177 citations

Journal ArticleDOI
TL;DR: In this paper, the star formation efficiency (SFE) per unit of gas in 23 nearby galaxies and compare it with expectations from proposed star formation laws and thresholds was measured, and the authors interpreted this decline as a strong dependence of giant molecular cloud (GMC) formation on environment.
Abstract: We measure the star formation efficiency (SFE), the star formation rate (SFR) per unit of gas, in 23 nearby galaxies and compare it with expectations from proposed star formation laws and thresholds. We use H I maps from The H I Nearby Galaxy Survey (THINGS) and derive H2 maps of CO measured by HERA CO-Line Extragalactic Survey and Berkeley-Illinois-Maryland Association Survey of Nearby Galaxies. We estimate the SFR by combining Galaxy Evolution Explorer (GALEX) far-ultraviolet maps and the Spitzer Infrared Nearby Galaxies Survey (SINGS) 24 ?m maps, infer stellar surface density profiles from SINGS 3.6 ?m data, and use kinematics from THINGS. We measure the SFE as a function of the free fall and orbital timescales, midplane gas pressure, stability of the gas disk to collapse (including the effects of stars), the ability of perturbations to grow despite shear, and the ability of a cold phase to form. In spirals, the SFE of H2 alone is nearly constant at (5.25 ? 2.5) ? 10?10 yr?1 (equivalent to an H2 depletion time of 1.9 ? 109 yr) as a function of all of these variables at our 800 pc resolution. Where the interstellar medium (ISM) is mostly H I, however, the SFE decreases with increasing radius in both spiral and dwarf galaxies, a decline reasonably described by an exponential with scale length 0.2r 25-0.25r 25. We interpret this decline as a strong dependence of giant molecular cloud (GMC) formation on environment. The ratio of molecular-to-atomic gas appears to be a smooth function of radius, stellar surface density, and pressure spanning from the H2-dominated to H I-dominated ISM. The radial decline in SFE is too steep to be reproduced only by increases in the free-fall time or orbital time. Thresholds for large-scale instability suggest that our disks are stable or marginally stable and do not show a clear link to the declining SFE. We suggest that ISM physics below the scales that we observe?phase balance in the H I, H2 formation and destruction, and stellar feedback?governs the formation of GMCs from H I.

1,888 citations

Journal ArticleDOI
TL;DR: The Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) is a five telescope package, which has been developed for the Solar Terrestrial Relation Observatory (STEREO) mission.
Abstract: The Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) is a five telescope package, which has been developed for the Solar Terrestrial Relation Observatory (STEREO) mission by the Naval Research Laboratory (USA), the Lockheed Solar and Astrophysics Laboratory (USA), the Goddard Space Flight Center (USA), the University of Birmingham (UK), the Rutherford Appleton Laboratory (UK), the Max Planck Institute for Solar System Research (Germany), the Centre Spatiale de Leige (Belgium), the Institut d’Optique (France) and the Institut d’Astrophysique Spatiale (France). SECCHI comprises five telescopes, which together image the solar corona from the solar disk to beyond 1 AU. These telescopes are: an extreme ultraviolet imager (EUVI: 1–1.7 R⊙), two traditional Lyot coronagraphs (COR1: 1.5–4 R⊙ and COR2: 2.5–15 R⊙) and two new designs of heliospheric imagers (HI-1: 15–84 R⊙ and HI-2: 66–318 R⊙). All the instruments use 2048×2048 pixel CCD arrays in a backside-in mode. The EUVI backside surface has been specially processed for EUV sensitivity, while the others have an anti-reflection coating applied. A multi-tasking operating system, running on a PowerPC CPU, receives commands from the spacecraft, controls the instrument operations, acquires the images and compresses them for downlink through the main science channel (at compression factors typically up to 20×) and also through a low bandwidth channel to be used for space weather forecasting (at compression factors up to 200×). An image compression factor of about 10× enable the collection of images at the rate of about one every 2–3 minutes. Identical instruments, except for different sizes of occulters, are included on the STEREO-A and STEREO-B spacecraft.

1,781 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the relationship between the local environment of galaxies and their star formation rate (SFR) in the Great Observatories Origins Deep Survey, GOODS, at z∼1.
Abstract: Aims We study the relationship between the local environment of galaxies and their star formation rate (SFR) in the Great Observatories Origins Deep Survey, GOODS, at z∼1 Methods We use ultradeep imaging at 24� m with the MIPS camera onboard Spitzer to determine the contribution of obscured light to the SFR of galaxies over the redshift range 08≤ z ≤12 Accurate galaxy densities are measured thanks to the large sample of ∼1200 spectroscopic redshifts with high (∼70 %) spectroscopic completeness Morphology and stellar masses are derived from deep HST-ACS imaging, supplemented by ground based imaging programs and photometry from the IRAC camera onboard Spitzer Results We show that the star formation‐density relation observed locally was reversed at z∼ 1: the average SFR of an individual galaxy increased with local galaxy density when the universe was less than half its present age Hierarchical galaxy for mation models (simulated lightcones from the Millennium model) predicted such a reversal to occur only at earlier epochs (z>2) and at a lower level We present a remarkable structure at z∼ 1016, containing X-ray traced galaxy concentrations, which will eventually merge into a Virgo-like cluster This structure illustrates how the ind ividual SFR of galaxies increases with density and shows that it is the∼1‐2 Mpc scale that affects most the star formation in galaxies at z∼ 1 The SFR of z∼ 1 galaxies is found to correlate with stellar mass suggesting that mass plays a role in the observed star formation‐density trend However the specific SFR ( =SFR/M⋆) decreases with stellar mass while it increases with galaxy density, which i mplies that the environment does directly affect the star formation activity of galaxies Major mergers do not appear to be the unique or even major cause for this effect since nearly half (46 %) of the luminous infrared galaxies (LIRGs) at z∼ 1 present the HST-ACS morphology of spirals, while only a third present a clear signature of major mergers The remaining galaxies are divided into compact (9 %) and irregular (14 %) galaxies Moreover, the specific SFR o f major mergers is only marginally stronger than that of spirals Conclusions These findings constrain the influence of the growth of large- scale structures on the star formation history of galaxies Reproducing the SFR‐density relation at z∼ 1 is a new challenge for models, requiring a correct balance between mass assembly through mergers and in-situ star formation at early epochs

1,696 citations

Journal ArticleDOI
TL;DR: The Infrared Spectrograph (IRS) as discussed by the authors is one of the three science instruments on the Spitzer Space Telescope and is optimized to take full advantage of the very low background in the space environment.
Abstract: The Infrared Spectrograph (IRS) is one of three science instruments on the Spitzer Space Telescope .T he IRS comprises four separate spectrograph modules covering the wavelength range from 5.3 to 38 � m with spectral resolutions, R ¼ k=� k � 90 and 600, and it was optimized to take full advantage of the very low background in the space environment. The IRS is performing at or better than the prelaunch predictions. An autonomous target acquisition capability enables the IRS to locate the mid-infrared centroid of a source, providing the information so that the spacecraft can accurately offset that centroid to a selected slit. This feature is particularly useful when taking spectra of sources with poorly known coordinates. An automated data-reduction pipeline has been developed at the Spitzer Science Center. Subject headingg infrared: general — instrumentation: spectrographs — space vehicles: instruments

1,628 citations