scispace - formally typeset
Search or ask a question
Author

John F. Brady

Bio: John F. Brady is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Stokesian dynamics & Brownian motion. The author has an hindex of 69, co-authored 194 publications receiving 15867 citations. Previous affiliations of John F. Brady include Stanford University & University of San Diego.


Papers
More filters
Journal ArticleDOI
TL;DR: The change in viscosity that occurs when colloidal fluids experience shear stress has been studied in this article, where the authors identify a number of materials whose rheology changes due to the shear stresses.
Abstract: Shampoos, paints, cements, and soft body armor that stiffens under impact are just a few of the materials whose rheology is due to the change in viscosity that occurs when colloidal fluids experience shear stress.

777 citations

Journal ArticleDOI
TL;DR: In this paper, a model for suspension flow is proposed in which macroscopic mass, momentum and energy balances are constructed and solved simultaneously, and the concept of the suspension temperature is introduced in order to provide a nonlocal description of suspension behaviour.
Abstract: Dynamic simulations of the pressure-driven flow in a channel of a non-Brownian suspension at zero Reynolds number were conducted using Stokesian Dynamics. The simulations are for a monolayer of identical particles as a function of the dimensionless channel width and the bulk particle concentration. Starting from a homogeneous dispersion, the particles gradually migrate towards the centre of the channel, resulting in an homogeneous concentration profile and a blunting of the particle velocity profile. The time for achieving steady state scales as (H/a)3a/[left angle bracket]u[right angle bracket], where H is the channel width, a the radii of the particles, and [left angle bracket]u[right angle bracket] the average suspension velocity in the channel. The concentration and velocity profiles determined from the simulations are in qualitative agreement with experiment. A model for suspension flow has been proposed in which macroscopic mass, momentum and energy balances are constructed and solved simultaneously. It is shown that the requirement that the suspension pressure be constant in directions perpendicular to the mean motion leads to particle migration and concentration variations in inhomogeneous flow. The concept of the suspension ‘temperature’ – a measure of the particle velocity fluctuations – is introduced in order to provide a nonlocal description of suspension behaviour. The results of this model for channel flow are in good agreement with the simulations.

733 citations

Journal ArticleDOI
TL;DR: In this article, a general method for computing the hydrodynamic interactions among N suspended particles, under the condition of vanishingly small particle Reynolds number, is presented, which accounts for both near-field lubrication effects and the dominant many-body interactions.
Abstract: A general method for computing the hydrodynamic interactions among N suspended particles, under the condition of vanishingly small particle Reynolds number, is presented. The method accounts for both near-field lubrication effects and the dominant many-body interactions. The many-body hydrodynamic interactions reproduce the screening characteristic of porous media and the ‘effective viscosity’ of free suspensions. The method is accurate and computationally efficient, permitting the dynamic simulation of arbitrarily configured many-particle systems. The hydrodynamic interactions calculated are shown to agree well with available exact calculations for small numbers of particles and to reproduce slender-body theory for linear chains of particles. The method can be used to determine static (i.e. configuration specific) and dynamic properties of suspended particles that interact through both hydrodynamic and non-hydrodynamic forces, where the latter may be any type of Brownian. colloidal, interparticle or external force. The method is also readily extended to dynamically simulate both unbounded and bounded suspensions.

529 citations

Journal ArticleDOI
TL;DR: In this paper, the Stokesian dynamics is used to investigate the rheological behavior of concentrated suspensions in a simple shear flow, and the simulation results suggest that the suspension viscosity becomes infinite at the percolation-like threshold ϕm owing to the formation of an infinite cluster.
Abstract: The newly developed simulation method known as Stokesian dynamics is used to investigate the rheological behaviour of concentrated suspensions. Both the detailed microstructure (e.g. pair-distribution function) and the macroscopic properties are determined for a suspension of identical rigid spherical particles in a simple shear flow. The suspended particles interact through both hydrodynamic and non-hydrodynamic forces. For suspensions with purely hydrodynamic forces, the increase in the suspension viscosity with volume fraction ϕ is shown to be caused by particle clustering. The cluster formation results from the lubrication forces, and the simulations of a monolayer of spheres show a scaling law for the cluster size: lc ∼ [1 − (ϕ/ϕm)½]−1, where ϕm is the maximum volume fraction that can shear homogeneously. The simulation results suggest that the suspension viscosity becomes infinite at the percolation-like threshold ϕm owing to the formation of an infinite cluster. The predicted simulation viscosities are in very good agreement with experiment. A suspension with short-range repulsive interparticle forces is also studied, and is seen to have a non-Newtonian rheology. Normal-stress differences arise owing to the anisotropic local structure created by the interparticle forces. The repulsive forces also reduce particle clustering, and as a result the suspension is shear-thickening.

519 citations

Journal ArticleDOI
TL;DR: In this article, the non-equilibrium behavior of concentrated colloidal dispersions is studied using Stokesian Dynamics, a molecular-dynamics-like simulation technique for analysing suspensions of particles immersed in a Newtonian fluid.
Abstract: The non-equilibrium behaviour of concentrated colloidal dispersions is studied using Stokesian Dynamics, a molecular-dynamics-like simulation technique for analysing suspensions of particles immersed in a Newtonian fluid. The simulations are of a monodisperse suspension of Brownian hard spheres in simple shear flow as a function of the Peclet number, Pe, which measures the relative importance of hydrodynamic and Brownian forces, over a range of volume fraction 0.316 [less-than-or-eq, slant] [phi] [less-than-or-eq, slant] 0.49. For Pe < 10, Brownian motion dominates the behaviour, the suspension remains well-dispersed, and the viscosity shear thins. The first normal stress difference is positive and the second negative. At higher Pe, hydrodynamics dominate resulting in an increase in the long-time self-diffusivity and the viscosity. The first normal stress difference changes sign when hydrodynamics dominate. Simulation results are shown to agree well with both theory and experiment.

484 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Book
01 Jan 1984
TL;DR: In this paper, the authors describe a transition from Laminar boundary layer flow to Turbulent Boundary Layer flow with change of phase Mass Transfer Convection in Porous Media.
Abstract: Fundamental Principles Laminar Boundary Layer Flow Laminar Duct Flow External Natural Convection Internal Natural Convection Transition to Turbulence Turbulent Boundary Layer Flow Turbulent Duct Flow Free Turbulent Flows Convection with Change of Phase Mass Transfer Convection in Porous Media.

4,067 citations

Journal ArticleDOI
TL;DR: Van Kampen as mentioned in this paper provides an extensive graduate-level introduction which is clear, cautious, interesting and readable, and could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes.
Abstract: N G van Kampen 1981 Amsterdam: North-Holland xiv + 419 pp price Dfl 180 This is a book which, at a lower price, could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes, as well as those who just enjoy a beautifully written book. It provides an extensive graduate-level introduction which is clear, cautious, interesting and readable.

3,647 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that a "nanofluid" consisting of copper nanometer-sized particles dispersed in ethylene glycol has a much higher effective thermal conductivity than either pure or pure glycol or even polyethylene glycol containing the same volume fraction of dispersed oxide nanoparticles.
Abstract: It is shown that a “nanofluid” consisting of copper nanometer-sized particles dispersed in ethylene glycol has a much higher effective thermal conductivity than either pure ethylene glycol or ethylene glycol containing the same volume fraction of dispersed oxide nanoparticles. The effective thermal conductivity of ethylene glycol is shown to be increased by up to 40% for a nanofluid consisting of ethylene glycol containing approximately 0.3 vol % Cu nanoparticles of mean diameter <10 nm. The results are anomalous based on previous theoretical calculations that had predicted a strong effect of particle shape on effective nanofluid thermal conductivity, but no effect of either particle size or particle thermal conductivity.

3,551 citations

Journal ArticleDOI
TL;DR: In this article, the authors consider the specific effects of a bias on anomalous diffusion, and discuss the generalizations of Einstein's relation in the presence of disorder, and illustrate the theoretical models by describing many physical situations where anomalous (non-Brownian) diffusion laws have been observed or could be observed.

3,383 citations