scispace - formally typeset
Search or ask a question
Author

John F. Peters

Bio: John F. Peters is an academic researcher from Mississippi State University. The author has contributed to research in topics: Discrete element method & Contact force. The author has an hindex of 21, co-authored 95 publications receiving 1911 citations. Previous affiliations of John F. Peters include United States Department of the Army & Engineer Research and Development Center.


Papers
More filters
Journal ArticleDOI
TL;DR: A procedure to quantify the occurrence of force chains is built on a proposed definition having two parts: first, the chain is a quasilinear arrangement of three or more particles, and second, along the chain, stress concentration within each grain is characterized by the vector delineating the most compressive principal stress.
Abstract: It has been observed that the majority of particles in a granular material carries less than the average load and that the number of particles carrying larger than the average load decreases exponentially with increasing contact force. The particles carrying above average load appear to form a strong network of forces while the majority of particles belong to a weak network. The strong network of forces appear to have a spatial characteristic whereby the stronger forces are carried though chainlike particle groups referred to as force chains. There is a strong case for a connection between force chains of the discrete medium and the trajectory of the most compressive principal stress in its continuous idealization. While such properties seem obvious from descriptive analysis of physical and numerical experiments in granular media, progress in quantification of the force chain statistics requires an objective description of what constitutes a force chain. A procedure to quantify the occurrence of force chains is built on a proposed definition having two parts: first, the chain is a quasilinear arrangement of three or more particles, and second, along the chain, stress concentration within each grain is characterized by the vector delineating the most compressive principal stress. The procedure is incorporated into an algorithm that can be applied to large particle assemblies to compile force chain statistics. The procedure is demonstrated on a discrete element simulation of a rigid punch into a half space. It was found that only approximately half of the particles within the group of so-called strong network particles are part of force chains. Throughout deformation, the average length of force chains varied slightly but the number of force chains decreased as the punch advanced. The force chain lengths follow an exponential distribution. The procedure provides a tool for objective analysis of force chains, although future work is required to incorporate branching of force chains into the analysis.

369 citations

Journal ArticleDOI
TL;DR: In this paper, a random-walk particle tracking (PT) method was used to simulate tracer movement within pore-scale flow fields computed with the lattice-Boltzmann (LB) method.
Abstract: Tracer dispersion has been simulated in three-dimensional models of regular and random sphere packings for a range of Peclet numbers. A random-walk particle-tracking (PT) method was used to simulate tracer movement within pore-scale flow fields computed with the lattice-Boltzmann (LB) method. The simulation results illustrate the time evolution of dispersion, and they corroborate a number of theoretical and empirical results for the scaling of asymptotic longitudinal and transverse dispersion with Peclet number. Comparisons with nuclear magnetic resonance (NMR) spectroscopy experiments show agreement on transient, as well as asymptotic, dispersion rates. These results support both NMR findings that longitudinal dispersion rates are significantly lower than reported in earlier experimental literature, as well as the fact that asymptotic rates are observed in relatively short times by techniques that employ a uniform initial distribution of tracers, like NMR.

189 citations

Journal ArticleDOI
TL;DR: In this article, a large deformation soil model is presented to demonstrate the feasibility of particle models to simulate full-scale vehicle-soil interaction problems in which the soil undergoes large excavation-like deformation.
Abstract: This paper describes the current work on a large deformation soil model to demonstrate the feasibility of particle models to simulate full-scale vehicle-soil interaction problems in which the soil undergoes large excavation-like deformation. To achieve this objective, boundary conditions that accurately represent the vehicle geometry had to be incorporated into a 3D discrete element model. The approach taken was to use a finite-element grid to model the vehicle component interacting with the soil and develop routines to model the particle-grid interactions. The particle-grid interactions were more complicated than the particle-particle interactions required for the soil simulations and pose the greatest challenge to the use of computational parallelism. Two examples are presented in which vehicle components are modeled by finite elements that interact with 10 million discrete soil elements. Important theoretical issues are briefly noted concerning mechanics of granular media that are critical to acceptance of the nascent discrete element modeling technology.

91 citations

Journal ArticleDOI
TL;DR: In this paper, a generalization of the Taylor-Aris model of dispersion in a tube provides qualitative predictions of the long-time dispersion behavior in packed cylinders, and the degree of enhancement is related to the cylinder radius.
Abstract: Pore-scale simulations of monodisperse sphere packing and fluid flow in cylinders have reproduced heterogeneities in packing density and velocity previously observed in experiment. Simulations of tracer dispersion demonstrate that these heterogeneities enhance hydrodynamic dispersion, and that the degree of enhancement is related to the cylinder radius, R. The time scale for asymptotic dispersion in a packed cylinder is proportional to R2/DT, where DT represents an average rate of spreading transverse to the direction of flow. A generalization of the Taylor–Aris model of dispersion in a tube provides qualitative predictions of the long-time dispersion behavior in packed cylinders.

89 citations

Journal ArticleDOI
TL;DR: In this article, the poly-ellipsoid shape is used to describe particles in discrete element simulations that incur a computational cost similar to ellipsoidal particles, and the mathematical representation of the particle shape can be in the form of either an implicit function or as parametric equations.
Abstract: Purpose – The purpose of this paper is to present a simple non‐symmetric shape, the poly‐ellipsoid, to describe particles in discrete element simulations that incur a computational cost similar to ellipsoidal particles.Design/methodology/approach – Particle shapes are derived from joining octants of eight ellipsoids, each having different aspect ratios, across their respective principal planes to produce a compound surface that is continuous in both surface coordinate and normal direction. Because each octant of the poly‐ellipsoid is described as an ellipsoid, the mathematical representation of the particle shape can be in the form of either an implicit function or as parametric equations.Findings – The particle surface is defined by six parameters (vs the 24 parameters required to define the eight component ellipsoids) owing to dependencies among parameters that must be imposed to create continuous intersections. Despite the complexity of the particle shapes, the particle mass, centroid and moment of ine...

81 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: Pore-scale imaging and modelling is becoming a routine service in the oil and gas industry as discussed by the authors, and has potential applications in contaminant transport and carbon dioxide storage, which has been shown to transform our understanding of multiphase flow processes.

1,421 citations

Journal ArticleDOI
TL;DR: Zhu et al. as discussed by the authors provided a summary of the studies based on discrete particle simulation in the past two decades or so, with emphasis on the microdynamics including packing/flow structure and particle-particle, particle-fluid and particle wall interaction forces.

1,253 citations

Journal ArticleDOI
James R. Rice1
TL;DR: In this article, the authors suggest that the most relevant weakening processes in large crustal events are thermal, and to involve thermal pressurization of pore fluid within and adjacent to the deforming fault core, which reduces the effective normal stress and hence also the shear strength for a given friction coefficient.
Abstract: [1] Field observations of mature crustal faults suggest that slip in individual events occurs primarily within a thin shear zone, <1–5 mm, within a finely granulated, ultracataclastic fault core. Relevant weakening processes in large crustal events are therefore suggested to be thermal, and to involve the following: (1) thermal pressurization of pore fluid within and adjacent to the deforming fault core, which reduces the effective normal stress and hence also the shear strength for a given friction coefficient and (2) flash heating at highly stressed frictional microcontacts during rapid slip, which reduces the friction coefficient. (Macroscopic melting, or possibly gel formation in silica-rich lithologies, may become important too at large enough slip.) Theoretical modeling of mechanisms 1 and 2 is constrained with lab-determined hydrologic and poroelastic properties of fault core materials and lab friction studies at high slip rates. Predictions are that strength drop should often be nearly complete at large slip and that the onset of melting should be precluded over much (and, for small enough slip, all) of the seismogenic zone. A testable prediction is of the shear fracture energies that would be implied if actual earthquake ruptures were controlled by those thermal mechanisms. Seismic data have been compiled on the fracture energy of crustal events, including its variation with slip in an event. It is plausibly described by theoretical predictions based on the above mechanisms, within a considerable range of uncertainty of parameter choices, thus allowing the possibility that such thermal weakening prevails in the Earth.

1,035 citations

01 Jan 2013

801 citations