scispace - formally typeset
Search or ask a question
Author

John Fenner

Bio: John Fenner is an academic researcher from University of Sheffield. The author has contributed to research in topics: Imaging phantom & Vortex. The author has an hindex of 13, co-authored 56 publications receiving 752 citations. Previous affiliations of John Fenner include Glasgow Royal Infirmary & Royal Hallamshire Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: The biomedical science, healthcare and information and communications technology challenges facing the project are considered and the VPH Institute is proposed as a means of sustaining the vision of VPH beyond the time frame of the NoE.
Abstract: European funding under framework 7 (FP7) for the virtual physiological human (VPH) project has been in place now for nearly 2 years. The VPH network of excellence (NoE) is helping in the development of common standards, open-source software, freely accessible data and model repositories, and various training and dissemination activities for the project. It is also helping to coordinate the many clinically targeted projects that have been funded under the FP7 calls. An initial vision for the VPH was defined by framework 6 strategy for a European physiome (STEP) project in 2006. It is now time to assess the accomplishments of the last 2 years and update the STEP vision for the VPH. We consider the biomedical science, healthcare and information and communications technology challenges facing the project and we propose the VPH Institute as a means of sustaining the vision of VPH beyond the time frame of the NoE.

164 citations

Journal ArticleDOI
TL;DR: This paper considers issues pertinent to the development of the VPH, highlighted by the work of the STEP consortium, to create a framework capable of describing Homo sapiens in silico.
Abstract: Biomedical science and its allied disciplines are entering a new era in which computational methods and technologies are poised to play a prevalent role in supporting collaborative investigation of the human body. Within Europe, this has its focus in the virtual physiological human (VPH), which is an evolving entity that has emerged from the EuroPhysiome initiative and the strategy for the EuroPhysiome (STEP) consortium. The VPH is intended to be a solution to common infrastructure needs for physiome projects across the globe, providing a unifying architecture that facilitates integration and prediction, ultimately creating a framework capable of describing Homo sapiens in silico. The routine reliance of the biomedical industry, biomedical research and clinical practice on information technology (IT) highlights the importance of a tailor-made and robust IT infrastructure, but numerous challenges need to be addressed if the VPH is to become a mature technological reality. Appropriate investment will reap considerable rewards, since it is anticipated that the VPH will influence all sectors of society, with implications predominantly for improved healthcare, improved competitiveness in industry and greater understanding of (patho)physiological processes. This paper considers issues pertinent to the development of the VPH, highlighted by the work of the STEP consortium.

116 citations

Journal ArticleDOI
TL;DR: This assessment and proposed that a not-for-profit professional umbrella organization, the VPH Institute, should be established as a means of sustaining the V PH vision beyond the time-frame of the NoE are addressed.
Abstract: European funding under Framework 7 (FP7) for the virtual physiological human (VPH) project has been in place now for 5 years. The VPH Network of Excellence (NoE) has been set up to help develop common standards, open source software, freely accessible data and model repositories, and various training and dissemination activities for the project. It is also working to coordinate the many clinically targeted projects that have been funded under the FP7 calls. An initial vision for the VPH was defined by the FP6 STEP project in 2006. In 2010, we wrote an assessment of the accomplishments of the first two years of the VPH in which we considered the biomedical science, healthcare and information and communications technology challenges facing the project (Hunter et al. 2010 Phil. Trans. R. Soc. A 368, 2595-2614 (doi:10.1098/rsta.2010.0048)). We proposed that a not-for-profit professional umbrella organization, the VPH Institute, should be established as a means of sustaining the VPH vision beyond the time-frame of the NoE. Here, we update and extend this assessment and in particular address the following issues raised in response to Hunter et al.: (i) a vision for the VPH updated in the light of progress made so far, (ii) biomedical science and healthcare challenges that the VPH initiative can address while also providing innovation opportunities for the European industry, and (iii) external changes needed in regulatory policy and business models to realize the full potential that the VPH has to offer to industry, clinics and society generally.

90 citations

Journal ArticleDOI
TL;DR: In this article, in vitro tissue bonds were created over the temperature range 20 − 90°C without the use of a laser by approximating the tissue in a temperature controlled clamp, and the effect of temperature and hydration on bond strength was examined.
Abstract: The mechanism of laser bonding is not yet understood, but it is considered to be a thermal rather than a photochemical effect. The conditions required for successful anastomosis remain a controversial topic. In an alternative approach, in vitro tissue bonds were created over the temperature range 20–90°C without the use of a laser by approximating the tissue in a temperature controlled clamp. Bond integrity was assessed by measurement of breaking strength, and the effect of temperature and hydration on bond strength was examined. Bonds created under conditions of dehydration were significantly stronger than their hydrated counterparts. Temperature dependence was also observed, and bond strength significantly increased when temperatures exceeded the tissue denaturation temperature. As a result of these findings, a possible bonding mechanism is proposed.

30 citations

Journal ArticleDOI
TL;DR: The gain in performance from using machine learning algorithms as compared to semi-quantification was relatively small and may be insufficient, when considered in isolation, to offer significant advantages in the clinical context.
Abstract: Semi-quantification methods are well established in the clinic for assisted reporting of (I123) Ioflupane images. Arguably, these are limited diagnostic tools. Recent research has demonstrated the potential for improved classification performance offered by machine learning algorithms. A direct comparison between methods is required to establish whether a move towards widespread clinical adoption of machine learning algorithms is justified. This study compared three machine learning algorithms with that of a range of semi-quantification methods, using the Parkinson’s Progression Markers Initiative (PPMI) research database and a locally derived clinical database for validation. Machine learning algorithms were based on support vector machine classifiers with three different sets of features: Semi-quantification methods were based on striatal binding ratios (SBRs) from both putamina, with and without consideration of the caudates. Normal limits for the SBRs were defined through four different methods: Each machine learning and semi-quantification technique was evaluated with stratified, nested 10-fold cross-validation, repeated 10 times. The mean accuracy of the semi-quantitative methods for classification of local data into Parkinsonian and non-Parkinsonian groups varied from 0.78 to 0.87, contrasting with 0.89 to 0.95 for classifying PPMI data into healthy controls and Parkinson’s disease groups. The machine learning algorithms gave mean accuracies between 0.88 to 0.92 and 0.95 to 0.97 for local and PPMI data respectively. Classification performance was lower for the local database than the research database for both semi-quantitative and machine learning algorithms. However, for both databases, the machine learning methods generated equal or higher mean accuracies (with lower variance) than any of the semi-quantification approaches. The gain in performance from using machine learning algorithms as compared to semi-quantification was relatively small and may be insufficient, when considered in isolation, to offer significant advantages in the clinical context.

29 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Phenomics should be recognized and pursued as an independent discipline to enable the development and adoption of high-throughput and high-dimensional phenotyping.
Abstract: A key goal of biology is to understand phenotypic characteristics, such as health, disease and evolutionary fitness. Phenotypic variation is produced through a complex web of interactions between genotype and environment, and such a 'genotype-phenotype' map is inaccessible without the detailed phenotypic data that allow these interactions to be studied. Despite this need, our ability to characterize phenomes - the full set of phenotypes of an individual - lags behind our ability to characterize genomes. Phenomics should be recognized and pursued as an independent discipline to enable the development and adoption of high-throughput and high-dimensional phenotyping.

1,104 citations

01 Sep 1996
TL;DR: The objectives of the European Community, as laid down in the Treaty, as amended by the Treaty on European Union, include creating an ever closer union among the peoples of Europe, fostering closer relations between the States belonging to the Community, ensuring economic and social progress by common action to eliminate the barriers which divide Europe, encouraging the constant improvement of the living conditions of its peoples, preserving and strengthening peace and liberty and promoting democracy on the basis of the fundamental rights recognized in the constitution and laws of the Member States and in the European Convention for the Protection of Human Rights and Fundamental Freedoms
Abstract: (1) Whereas the objectives of the Community, as laid down in the Treaty, as amended by the Treaty on European Union, include creating an ever closer union among the peoples of Europe, fostering closer relations between the States belonging to the Community, ensuring economic and social progress by common action to eliminate the barriers which divide Europe, encouraging the constant improvement of the living conditions of its peoples, preserving and strengthening peace and liberty and promoting democracy on the basis of the fundamental rights recognized in the constitution and laws of the Member States and in the European Convention for the Protection of Human Rights and Fundamental Freedoms;

792 citations

Journal ArticleDOI
TL;DR: The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular reactive oxygen species (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive as discussed by the authors.
Abstract: The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular 'reactive oxygen species' (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation.

452 citations

Repository
TL;DR: It is argued that the role of poorly liganded iron has been rather underappreciated in the past, and that in combination with peroxide and superoxide its activity underpins the behaviour of a great many physiological processes that degrade over time.
Abstract: The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...

451 citations