scispace - formally typeset
Search or ask a question
Author

John Freudenthal

Bio: John Freudenthal is an academic researcher from New York University. The author has contributed to research in topics: Birefringence & Mueller calculus. The author has an hindex of 15, co-authored 21 publications receiving 793 citations. Previous affiliations of John Freudenthal include University of Washington & Saint Petersburg State University.

Papers
More filters
Journal ArticleDOI
TL;DR: A spectroscopic Mueller matrix polarimeter with four photoelastic modulators (PEMs) and no moving parts is introduced.
Abstract: A spectroscopic Mueller matrix polarimeter with four photoelastic modulators (PEMs) and no moving parts is introduced. In the 4-PEM polarimeter, all the elements of the Mueller matrix are simultaneously determined from the analysis of the frequencies of the time-dependent intensity of the light beam.

163 citations

Journal ArticleDOI
TL;DR: Crystals of the 2,4,6-tri-tert-butylphenoxyl radical have been isolated and characterized by X-ray diffraction, and calculations have been performed that give the distribution of spin density in the radical.

123 citations

Journal ArticleDOI
TL;DR: It is shown that growth can induce reversible twisting and untwisting of macroscopic crystals of hippuric acid (N-benzoylglycine, C( 9)H(9)NO(3)) on the scale of radians.
Abstract: Crystals grow in the mind’s eye by the addition of small units to a monolith each part of which is in fixed translational relation to every other part. Here, it is shown that growth can induce reversible twisting and untwisting of macroscopic crystals of hippuric acid (N-benzoylglycine, C9H9NO3) on the scale of radians. Crystals growing in undercooled melts of hippuric acid twist about the axis of elongation. At the same time the twisting is undone by new elastic stresses that build up as the crystal thickens. The dynamic interplay of twisting and untwisting ultimately fixes the crystal morphology. A correspondence between the optical properties of hippuric acid single crystals and twisted needles measured with a Mueller matrix microscope is established. The measured crystalloptical properties are in complete accord with the optical indicatrix rotating helically along the axis of elongation at the growth front, or counter-rotating so as to unwind earlier growth. The reversible morphological changes captur...

98 citations

Journal ArticleDOI
TL;DR: The microstructure of mannitol ring-banded spherulites compares favorably to that of high polymers and is evaluated within the context of current theories of crystal twisting.
Abstract: D-Mannitol belongs to a large and growing family of crystals with helical morphologies (Yu, L. J. Am. Chem. Soc.2003, 125, 6380). Two polymorphs of D-mannitol, α and δ, when grown in the presence of additives such as poly(vinylpyrrolidone) (PVP) or D-sorbitol, form ring-banded spherulites composed of handed helical fibrils, where the helix axes correspond to the radial growth directions. The two polymorphs form helices with opposite senses in the presence of PVP but the same sense in the presence of D-sorbitol. The characteristic dimensions of the fibrils, including thickness, aspect ratio, and pitch, were determined by scanning probe and electron microscopies. These values must form the basis of any theory that presupposes what forces give rise to crystal twisting, a problem that has been broached but unsettled in the literature of polymer crystallization. The interdependence of the rhythmic variations of both linear and circular birefringence, as determined by Mueller matrix microscopy, informs the cooperative organization of mannitol fibers. The microstructure of mannitol ring-banded spherulites compares favorably to that of high polymers and is evaluated within the context of current theories of crystal twisting.

69 citations

Journal ArticleDOI
TL;DR: These signals are shown not to have a chiroptical origin but rather result from the interactions of linear anisotropies in polycrystalline bodies, which are comprehensible crystal-optical effects that serve to define mesoscale structure.

59 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This issue discusses proton-coupled electron transfer or PCET processes, which are central to a great many chemical and biochemical processes, from biological catalysis and energy transduction, to bulk industrial chemical processes, to new approaches to solar energy conversion.
Abstract: Many, if not most, redox reactions are coupled to proton transfers. This includes most common sources of chemical potential energy, from the bioenergetic processes that power cells to the fossil fuel combustion that powers cars. These proton-coupled electron transfer or PCET processes may involve multiple electrons and multiple protons, as in the 4 e–, 4 H+ reduction of dioxygen (O2) to water (eq 1), or can involve one electron and one proton such as the formation of tyrosyl radicals from tyrosine residues (TyrOH) in enzymatic catalytic cycles (eq 2). In addition, many multi-electron, multi-proton processes proceed in one-electron and one-proton steps. Organic reactions that proceed in one-electron steps involve radical intermediates, which play critical roles in a wide range of chemical, biological, and industrial processes. This broad and diverse class of PCET reactions are central to a great many chemical and biochemical processes, from biological catalysis and energy transduction, to bulk industrial chemical processes, to new approaches to solar energy conversion. PCET is therefore of broad and increasing interest, as illustrated by this issue and a number of other recent reviews.

1,226 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analyses of the chiral stationary phase of the H2O/O2 mixture and shows clear trends in the direction of increasing chiral insensitivity to Naumov’s law.
Abstract: Pancě Naumov,*,† Stanislav Chizhik,‡,§ Manas K. Panda,† Naba K. Nath,† and Elena Boldyreva*,‡,§ †New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates ‡Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of Russian Academy of Sciences, ul. Kutateladze, 18, Novosibirsk 630128, Russia Novosibirsk State University, ul. Pirogova, 2, Novosibirsk 630090, Russia

572 citations

Journal ArticleDOI
TL;DR: DFT calculations and kinetic experiments suggest a mechanism for homogeneous iridium-catalyzed water oxidation and contribute to the determination of the rate-determining step.
Abstract: Iridium half-sandwich complexes of the types Cp*Ir(N−C)X, [Cp*Ir(N−N)X]X, and [CpIr(N−N)X]X are catalyst precursors for the homogeneous oxidation of water to dioxygen. Kinetic studies with cerium(IV) ammonium nitrate as primary oxidant show that oxygen evolution is rapid and continues over many hours. In addition, [Cp*Ir(H2O)3]SO4 and [(Cp*Ir)2(μ-OH)3]OH can show even higher turnover frequencies (up to 20 min−1 at pH 0.89). Aqueous electrochemical studies on the cationic complexes having chelate ligands show catalytic oxidation at pH > 7; conversely, at low pH, there are no oxidation waves up to 1.5 V vs NHE for the complexes. H218O isotope incorporation studies demonstrate that water is the source of oxygen atoms during cerium(IV)-driven catalysis. DFT calculations and kinetic experiments, including kinetic-isotope-effect studies, suggest a mechanism for homogeneous iridium-catalyzed water oxidation and contribute to the determination of the rate-determining step. The kinetic experiments also help distin...

482 citations

Journal ArticleDOI
08 Jun 2012-Science
TL;DR: It is shown that proton transfer can concurrently accompany electron transfer at the solvent interfaces of two common nanoparticle formulations (oxides of titanium and of zinc) and this results may help in the optimization of particle structure and energetics.
Abstract: Oxidation/reduction reactions at metal oxide surfaces are important to emerging solar energy conversion processes, photocatalysis, and geochemical transformations. Here we show that the usual description of these reactions as electron transfers is incomplete. Reduced TiO(2) and ZnO nanoparticles in solution can transfer an electron and a proton to phenoxyl and nitroxyl radicals, indicating that e(-) and H(+) are coupled in this interfacial reaction. These proton-coupled electron transfer (PCET) reactions are rapid and quantitative. The identification of metal oxide surfaces as PCET reagents has implications for the understanding and development of chemical energy technologies, which will rely on e(-)/H(+) coupling.

328 citations