scispace - formally typeset
Search or ask a question
Author

John G. Webster

Bio: John G. Webster is an academic researcher from University of Wisconsin-Madison. The author has contributed to research in topics: Pressure sensor & Electrical impedance tomography. The author has an hindex of 53, co-authored 229 publications receiving 10083 citations. Previous affiliations of John G. Webster include Wisconsin Alumni Research Foundation & King Abdulaziz University.


Papers
More filters
Journal ArticleDOI
TL;DR: An improved electrical impedance tomographic reconstruction algorithm is presented that is generally guaranteed to converge and provides significantly better reconstructions than any of the other methods.
Abstract: An improved electrical impedance tomographic reconstruction algorithm is presented that is generally guaranteed to converge. The algorithm is attractive for several reasons. A modified Newton?Raphson method varies a finite-element model of resistivities to fit a set of voltage measurements in a least-squared sense. Two procedures for calculating the Jacobian matrix are derived. One is standard, while the other is based on the compensation theorem. This second procedure is more efficient for computations, and just as accurate as the standard one. The inherent ill-conditioning in the approximate Hessian matrix of the linearized system is eliminated using the Marquardt method. Results from two-dimensional computer simulations are compared to four other reconstruction algorithms, which are based on methods proposed by other authors. The modified Newton?Raphson method provided significantly better reconstructions than any of the other methods. The algorithms compared are the perturbation, equipotential, iterative-equipotential, and the double-constraint methods. The modified Newton?Raphson method was found to be sensitive to measurement error, but future work in designing electrode-probing configurations is expected to reduce this sensitivity.

608 citations

Journal ArticleDOI
TL;DR: The power spectral analysis shows that the QRS complex could be separated from other interfering signals, and it is observed that a bandpass filter with a center frequency of 17 Hz and a Q of 5 yields the best signal-to-noise ratio.
Abstract: We present power spectral analysis of ECG waveforms as well as isolated QRS complexes and episodes of noise and artifact. The power spectral analysis shows that the QRS complex could be separated from other interfering signals. A bandpass filter that maximizes the signal (QRS complex)-to-noise (T-waves, 60 Hz, EMG, etc.) ratio would be of use in many ECG monitoring instruments. We calculate the coherence function and, from that, the signal-to-noise ratio. Upon carrying out this analysis on experimentaly obtained ECG data, we observe that a bandpass filter with a center frequency of 17 Hz and a Q of 5 yields the best signal-to-noise ratio.

437 citations

Journal ArticleDOI
TL;DR: The driven-right-leg circuit is analyzed and it is shown that high loop gains can cause instability and equations that can be used to design circuits that minimize common mode voltage without instability are presented.
Abstract: The driven-right-leg circuit is often used with biopotential differential amplifiers to reduce common mode voltage. We analyze this circuit and show that high loop gains can cause instability. We present equations that can be used to design circuits that minimize common mode voltage without instability. We also show that it is important to consider the reduction of high-frequency interference from fluorescent lights when determining the bandwidth of the drivenright-leg circuit.

417 citations

Journal ArticleDOI
TL;DR: The impedance of skin coated with gel but otherwise unprepared was measured at ten sites on the thorax, leg, and forehead of ten subjects, which suggests that the variation in skin impedance can cause errors in two-electrode electrical impedance tomographs.
Abstract: The impedance of skin coated with gel but otherwise unprepared was measured from 1 Hz to 1 MHz at ten sites on the thorax, leg, and forehead of ten subjects. For a 1-cm/sup 2/ area, the 1 Hz impedance varied from 10 k Omega to 1 M Omega , which suggests that the bipotential amplifier input impedance should be very high to avoid common-mode-to-differential-mode voltage conversion. The 1-MHz impedance was tightly clustered about 120 Omega . The 100-kHz impedance was about 220 Omega , which suggests that the variation in skin impedance can cause errors in two-electrode electrical impedance tomographs. >

364 citations

Journal ArticleDOI
TL;DR: Three three-dimensional thermal-electrical FEM models consisting of a four-tine RF probe, hepatic tissue, and a large blood vessel located at different locations are constructed and a preliminary result from a simplified two-dimensional FEM model that includes a bifurcated blood vessel is presented.
Abstract: Radio-frequency (RF) hepatic ablation, offers an alternative method for the treatment of hepatic malignancies. We employed finite-element method (FEM) analysis to determine tissue temperature distribution during RF hepatic ablation. We constructed three-dimensional (3-D) thermal-electrical FEM models consisting of a four-tine RF probe, hepatic tissue, and a large blood vessel (10-mm diameter) located at different locations. We simulated our FEM analyses under temperature-controlled (90/spl deg/C) 8-min ablation. We also present a preliminary result from a simplified two-dimensional (2-D) FEM model that includes a bifurcated blood vessel. Lesion shapes created by the four-tine RF probe were mushroom-like, and were limited by the blood vessel. When the distance of the blood vessel was 5 mm from the nearest distal electrode 1) in the 3-D model, the maximum tissue temperature (hot spot) appeared next to electrode A. The location of the hot spot was adjacent to another electrode 2) on the opposite side when the blood vessel was 1 mm from electrode A. The temperature distribution in the 2-D model was highly nonuniform due to the presence of the bifurcated blood vessel. Underdosed areas might be present next to the blood vessel from which the tumor can regenerate.

361 citations


Cited by
More filters
01 Jan 2016
TL;DR: The using multivariate statistics is universally compatible with any devices to read, allowing you to get the most less latency time to download any of the authors' books like this one.
Abstract: Thank you for downloading using multivariate statistics. As you may know, people have look hundreds times for their favorite novels like this using multivariate statistics, but end up in infectious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they juggled with some harmful bugs inside their laptop. using multivariate statistics is available in our digital library an online access to it is set as public so you can download it instantly. Our books collection saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the using multivariate statistics is universally compatible with any devices to read.

14,604 citations

Journal ArticleDOI
TL;DR: A real-time algorithm that reliably recognizes QRS complexes based upon digital analyses of slope, amplitude, and width of ECG signals and automatically adjusts thresholds and parameters periodically to adapt to such ECG changes as QRS morphology and heart rate.
Abstract: We have developed a real-time algorithm for detection of the QRS complexes of ECG signals. It reliably recognizes QRS complexes based upon digital analyses of slope, amplitude, and width. A special digital bandpass filter reduces false detections caused by the various types of interference present in ECG signals. This filtering permits use of low thresholds, thereby increasing detection sensitivity. The algorithm automatically adjusts thresholds and parameters periodically to adapt to such ECG changes as QRS morphology and heart rate. For the standard 24 h MIT/BIH arrhythmia database, this algorithm correctly detects 99.3 percent of the QRS complexes.

6,686 citations

Journal ArticleDOI
TL;DR: The PASE is a brief, easily scored, reliable and valid instrument for the assessment of physical activity in epidemiologic studies of older people.

2,714 citations

Journal ArticleDOI
TL;DR: It is concluded that the patient's skin should be abraded to reduce impedance, and measurements should be avoided in the first 10 min after electrode placement, to allow satisfactory images.
Abstract: A computer simulation is used to investigate the relationship between skin impedance and image artefacts in electrical impedance tomography. Sets of electrode impedance are generated with a pseudo-random distribution and used to introduce errors in boundary voltage measurements. To simplify the analysis, the non-idealities in the current injection circuit are replaced by a fixed common-mode error term. The boundary voltages are reconstructed into images and inspected. Where the simulated skin impedance remains constant between measurements, large impedances (> 2k omega) do not cause significant degradation of the image. Where the skin impedances 'drift' between measurements, a drift of 5% from a starting impedance of 100 omega is sufficient to cause significant image distortion. If the skin impedances vary randomly between measurements, they have to be less than 10 omega to allow satisfactory images. Skin impedances are typically 100-200 omega at 50 kHz on unprepared skin. These values are sufficient to cause image distortion if they drift over time. It is concluded that the patient's skin should be abraded to reduce impedance, and measurements should be avoided in the first 10 min after electrode placement.

1,976 citations

Journal ArticleDOI
TL;DR: A survey of the work in electrical impedance tomography can be found in this article, where the authors survey some of the most important works in the field. Butt.t.
Abstract: t. This paper surveys some of the work our group has done in electrical impedance tomography.

1,726 citations