scispace - formally typeset
Search or ask a question
Author

John Galayda

Bio: John Galayda is an academic researcher from Argonne National Laboratory. The author has contributed to research in topics: Particle accelerator & Undulator. The author has an hindex of 15, co-authored 69 publications receiving 1086 citations. Previous affiliations of John Galayda include Rutgers University & Stanford University.


Papers
More filters
Journal ArticleDOI
11 Aug 2000-Science
TL;DR: The approach uses a laser-seeded free-electron laser to produce amplified, longitudinally coherent, Fourier transform-limited output at a harmonic of the seed laser, with the ultimate goal of extending the approach to provide an intense, highly coherent source of hard x-rays.
Abstract: A high-gain harmonic-generation free-electron laser is demonstrated. Our approach uses a laser-seeded free-electron laser to produce amplified, longitudinally coherent, Fourier transform-limited output at a harmonic of the seed laser. A seed carbon dioxide laser at a wavelength of 10.6 micrometers produced saturated, amplified free-electron laser output at the second-harmonic wavelength, 5.3 micrometers. The experiment verifies the theoretical foundation for the technique and prepares the way for the application of this technique in the vacuum ultraviolet region of the spectrum, with the ultimate goal of extending the approach to provide an intense, highly coherent source of hard x-rays.

376 citations

Journal Article
TL;DR: In this paper, the influence of edge focusing on the tunes and chromaticities of the NSLS rings is described and a correction to the fringe field gradient peculiar to a combined function magnet with strong edge focusing is also found.
Abstract: Beam transport matrix elements describing the linearly falling fringe field of a combined function bending magnet are expanded in powers of the fringe field length by iteratively solving the integral form of Hill's equation. The method is applicable to any linear optical element with variable focusing strength along the reference orbit. Results for the vertical and horizontal focal lengths agree with previous calculations for a zero gradient magnet and an added correction to the dispersion is found for this case. A correction to the fringe field gradient peculiar to a combined-function magnet with strong edge focusing is also found. The influence of edge focusing on the tunes and chromaticities of the NSLS rings is described. The improved chromaticity calculation for the booster was of particular interest since this ring has bending magnets with poletips shaped to achieve small positive chromaticities.

134 citations

Journal ArticleDOI
TL;DR: This experiment extends to shorter wavelengths the operational knowledge of a linac-based SASE free-electron laser and explicitly shows the predicted exponential growth in intensity of the optical pulse as a function of length along the undulator.
Abstract: Experimental evidence for self-amplified spontaneous emission (SASE) at 530 nm is reported. The measurements were made at the low-energy undulator test line facility at the Advanced Photon Source, Argonne National Laboratory. The experimental setup and details of the experimental results are presented, as well as preliminary analysis. This experiment extends to shorter wavelengths the operational knowledge of a linac-based SASE free-electron laser and explicitly shows the predicted exponential growth in intensity of the optical pulse as a function of length along the undulator.

69 citations

Journal ArticleDOI
TL;DR: The first lasing of a high-gain harmonic generation (HGHG) free-electron laser (FEL) was performed at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL).
Abstract: We report on the first lasing of a high-gain harmonic generation (HGHG) free-electron laser (FEL). The experiment was conducted at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL). This is a BNL experiment in collaboration with the Advanced Photon Source (APS) at Argonne National Laboratory. A preliminary measurement gives a high-gain harmonic generation (HGHG) pulse energy that is 2×10 7 times larger than the spontaneous radiation. In a purely self-amplified spontaneous emission (SASE) mode of operation, the signal was measured as 10 times larger than the spontaneous radiation in the same distance (∼2 m) through the same wiggler. This means the HGHG signal is 2×10 6 times larger than the SASE signal. To obtain the same saturated output power by the SASE process, the radiator would have to be 3 times longer (6 m).

37 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A multiscale algorithm for the selection of salient regions of an image is introduced and its application to matching type problems such as tracking, object recognition and image retrieval is demonstrated.
Abstract: Many computer vision problems can be considered to consist of two main tasks: the extraction of image content descriptions and their subsequent matching. The appropriate choice of type and level of description is of course task dependent, yet it is generally accepted that the low-level or so called early vision layers in the Human Visual System are context independent. This paper concentrates on the use of low-level approaches for solving computer vision problems and discusses three inter-related aspects of this: saliencys scale selection and content description. In contrast to many previous approaches which separate these tasks, we argue that these three aspects are intrinsically related. Based on this observation, a multiscale algorithm for the selection of salient regions of an image is introduced and its application to matching type problems such as tracking, object recognition and image retrieval is demonstrated.

1,317 citations

Journal ArticleDOI
TL;DR: A mechanism is presented for automatic selection of scale levels when detecting one-dimensional image features, such as edges and ridges, with characteristic property that the selected scales on a scale-space ridge instead reflect the width of the ridge.
Abstract: When computing descriptors of image data, the type of information that can be extracted may be strongly dependent on the scales at which the image operators are applied. This article presents a systematic methodology for addressing this problem. A mechanism is presented for automatic selection of scale levels when detecting one-dimensional image features, such as edges and ridges. A novel concept of a scale-space edge is introduced, defined as a connected set of points in scale-space at which: (i) the gradient magnitude assumes a local maximum in the gradient direction, and (ii) a normalized measure of the strength of the edge response is locally maximal over scales. An important consequence of this definition is that it allows the scale levels to vary along the edge. Two specific measures of edge strength are analyzed in detail, the gradient magnitude and a differential expression derived from the third-order derivative in the gradient direction. For a certain way of normalizing these differential descriptors, by expressing them in terms of so-called γ-normalized derivatives, an immediate consequence of this definition is that the edge detector will adapt its scale levels to the local image structure. Specifically, sharp edges will be detected at fine scales so as to reduce the shape distortions due to scale-space smoothing, whereas sufficiently coarse scales will be selected at diffuse edges, such that an edge model is a valid abstraction of the intensity profile across the edge. Since the scale-space edge is defined from the intersection of two zero-crossing surfaces in scale-space, the edges will by definition form closed curves. This simplifies selection of salient edges, and a novel significance measure is proposed, by integrating the edge strength along the edge. Moreover, the scale information associated with each edge provides useful clues to the physical nature of the edge. With just slight modifications, similar ideas can be used for formulating ridge detectors with automatic selection, having the characteristic property that the selected scales on a scale-space ridge instead reflect the width of the ridge. It is shown how the methodology can be implemented in terms of straightforward visual front-end operations, and the validity of the approach is supported by theoretical analysis as well as experiments on real-world and synthetic data.

1,021 citations

ReportDOI
18 Aug 2000
TL;DR: ELEGANT (ELEctron Generation ANd Tracking) as discussed by the authors is the principle accelerator simulation code used at the Advanced Photon Source (APS) for circular and one-pass machines.
Abstract: ELEGANT (ELEctron Generation ANd Tracking) is the principle accelerator simulation code used at the Advanced Photon Source (APS) for circular and one-pass machines. Capabilities include 6-D tracking using matrices up to third order, canonical integration, and numerical integration. Standard beamline elements are supported, as well as coherent synchrotron radiation, wakefields, rf elements, kickers, apertures, scattering, and more. In addition to tracking with and without errors, ELEGANT performs optimization of tracked properties, as well as computation and optimization of Twiss parameters, radiation integrals, matrices, and floor coordinates. Orbit/trajectory, tune, and chromaticity correction are supported. ELEGANT is fully compliant with the Self Describing Data Sets (SDDS) file protocol, and hence uses the SDDS Toolkit for pre- and post-processing. This permits users to prepare scripts to run the code in a flexible and automated fashion. It is particularly well suited to multistage simulation and concurrent simulation on many workstations. Several examples of complex projects performed with ELEGANT are given, including top-up safety analysis of the APS and design of the APS bunch compressor.

894 citations

Journal ArticleDOI
TL;DR: In this paper, the FERMI free-electron laser operating in the high-gain harmonic generation regime was demonstrated, allowing high stability, transverse and longitudinal coherence and polarization control.
Abstract: Researchers demonstrate the FERMI free-electron laser operating in the high-gain harmonic generation regime, allowing high stability, transverse and longitudinal coherence and polarization control.

831 citations

Book
30 Apr 2020
TL;DR: In this paper, the fundamental properties of soft x-rays and extreme ultraviolet (EUV) radiation are discussed and their applications in a wide variety of fields, including EUV lithography for semiconductor chip manufacture and soft X-ray biomicroscopy.
Abstract: This self-contained, comprehensive book describes the fundamental properties of soft x-rays and extreme ultraviolet (EUV) radiation and discusses their applications in a wide variety of fields, including EUV lithography for semiconductor chip manufacture and soft x-ray biomicroscopy. The author begins by presenting the relevant basic principles such as radiation and scattering, wave propagation, diffraction, and coherence. He then goes on to examine a broad range of phenomena and applications. The topics covered include EUV lithography, biomicroscopy, spectromicroscopy, EUV astronomy, synchrotron radiation, and soft x-ray lasers. He also provides a great deal of useful reference material such as electron binding energies, characteristic emission lines and photo-absorption cross-sections. The book will be of great interest to graduate students and researchers in engineering, physics, chemistry, and the life sciences. It will also appeal to practicing engineers involved in semiconductor fabrication and materials science.

786 citations