scispace - formally typeset
Search or ask a question
Author

John H. Doonan

Bio: John H. Doonan is an academic researcher from Aberystwyth University. The author has contributed to research in topics: Gene & Mitosis. The author has an hindex of 55, co-authored 188 publications receiving 11273 citations. Previous affiliations of John H. Doonan include Norwich Research Park & John Innes Centre.


Papers
More filters
Journal ArticleDOI
22 Dec 2005-Nature
TL;DR: The aspergilli comprise a diverse group of filamentous fungi spanning over 200 million years of evolution, and a comparative study with Aspergillus fumigatus and As pergillus oryzae, used in the production of sake, miso and soy sauce, provides new insight into eukaryotic genome evolution and gene regulation.
Abstract: The aspergilli comprise a diverse group of filamentous fungi spanning over 200 million years of evolution. Here we report the genome sequence of the model organism Aspergillus nidulans, and a comparative study with Aspergillus fumigatus, a serious human pathogen, and Aspergillus oryzae, used in the production of sake, miso and soy sauce. Our analysis of genome structure provided a quantitative evaluation of forces driving long-term eukaryotic genome evolution. It also led to an experimentally validated model of mating-type locus evolution, suggesting the potential for sexual reproduction in A. fumigatus and A. oryzae. Our analysis of sequence conservation revealed over 5,000 non-coding regions actively conserved across all three species. Within these regions, we identified potential functional elements including a previously uncharacterized TPP riboswitch and motifs suggesting regulation in filamentous fungi by Puf family genes. We further obtained comparative and experimental evidence indicating widespread translational regulation by upstream open reading frames. These results enhance our understanding of these widely studied fungi as well as provide new insight into eukaryotic genome evolution and gene regulation.

1,297 citations

Journal ArticleDOI
TL;DR: A large‐scale analysis of the Aux/IAA‐ARF pathway in the shoot apex of Arabidopsis uncovered an unexpectedly simple distribution and structure of this pathway inThe shoot apex, providing evidence that the auxin signalling network is essential to create robust patterns at theshoot apex.
Abstract: The plant hormone auxin is thought to provide positional information for patterning during development. It is still unclear, however, precisely how auxin is distributed across tissues and how the hormone is sensed in space and time. The control of gene expression in response to auxin involves a complex network of over 50 potentially interacting transcriptional activators and repressors, the auxin response factors (ARFs) and Aux/IAAs. Here, we perform a large-scale analysis of the Aux/IAA-ARF pathway in the shoot apex of Arabidopsis, where dynamic auxin-based patterning controls organogenesis. A comprehensive expression map and full interactome uncovered an unexpectedly simple distribution and structure of this pathway in the shoot apex. A mathematical model of the Aux/IAA-ARF network predicted a strong buffering capacity along with spatial differences in auxin sensitivity. We then tested and confirmed these predictions using a novel auxin signalling sensor that reports input into the signalling pathway, in conjunction with the published DR5 transcriptional output reporter. Our results provide evidence that the auxin signalling network is essential to create robust patterns at the shoot apex.

511 citations

Journal ArticleDOI
TL;DR: It is suggested that the spread of H3K27me3 contributes to the mitotic heritability of Pc‐G silencing, and that the loss of silencing caused by transposon insertions at plant Pc-G targets reflects impaired spreading.
Abstract: The plant Polycomb-group (Pc-G) protein CURLY LEAF (CLF) is required to repress targets such as AGAMOUS (AG) and SHOOTMERISTEMLESS (STM). Using chromatin immunoprecipitation, we identify AG and STM as direct targets for CLF and show that they carry a characteristic epigenetic signature of dispersed histone H3 lysine 27 trimethylation (H3K27me3) and localised H3K27me2 methylation. H3K27 methylation is present throughout leaf development and consistent with this, CLF is required persistently to silence AG. However, CLF is not itself an epigenetic mark as it is lost during mitosis. We suggest a model in which Pc-G proteins are recruited to localised regions of targets and then mediate dispersed H3K27me3. Analysis of transgenes carrying AG regulatory sequences confirms that H3K27me3 can spread to novel sequences in a CLF-dependent manner and further shows that H3K27me3 methylation is not sufficient for silencing of targets. We suggest that the spread of H3K27me3 contributes to the mitotic heritability of Pc-G silencing, and that the loss of silencing caused by transposon insertions at plant Pc-G targets reflects impaired spreading.

396 citations

Journal ArticleDOI
TL;DR: The genetic underpinnings of an emerging phenotypic model where wheat domestication has transformed a long thin primitive grain to a wider and shorter modern grain are provided.
Abstract: Grain morphology in wheat (Triticum aestivum) has been selected and manipulated even in very early agrarian societies and remains a major breeding target. We undertook a large-scale quantitative analysis to determine the genetic basis of the phenotypic diversity in wheat grain morphology. A high-throughput method was used to capture grain size and shape variation in multiple mapping populations, elite varieties, and a broad collection of ancestral wheat species. This analysis reveals that grain size and shape are largely independent traits in both primitive wheat and in modern varieties. This phenotypic structure was retained across the mapping populations studied, suggesting that these traits are under the control of a limited number of discrete genetic components. We identified the underlying genes as quantitative trait loci that are distinct for grain size and shape and are largely shared between the different mapping populations. Moreover, our results show a significant reduction of phenotypic variation in grain shape in the modern germplasm pool compared with the ancestral wheat species, probably as a result of a relatively recent bottleneck. Therefore, this study provides the genetic underpinnings of an emerging phenotypic model where wheat domestication has transformed a long thin primitive grain to a wider and shorter modern grain.

372 citations

Journal ArticleDOI
TL;DR: It is shown that sRNA length and 5′ nucleotide do not account for the observed functional diversification of these AGOs, and the importance of tissue specificity and AGO-associated proteins in influencing epigenetic modifications is highlighted.
Abstract: Argonaute (AGO) effectors of RNA silencing bind small RNA (sRNA) molecules and mediate mRNA cleavage, translational repression, or epigenetic DNA modification. In many organisms, these targeting mechanisms are devolved to different products of AGO multigene families. To investigate the basis of AGO functional diversification, we characterized three closely related Arabidopsis thaliana AGOs (AGO4, AGO6, and AGO9) implicated in RNA-directed DNA methylation. All three AGOs bound 5' adenosine 24-nucleotide sRNAs, but each exhibited different preferences for sRNAs from different heterochromatin-associated loci. This difference was reduced when AGO6 and AGO9 were expressed from the AGO4 promoter, indicating that the functional diversification was partially due to differential expression of the corresponding genes. However, the AGO4-directed pattern of sRNA accumulation and DNA methylation was not fully recapitulated with AGO6 or AGO9 expressed from the AGO4 promoter. Here, we show that sRNA length and 5' nucleotide do not account for the observed functional diversification of these AGOs. Instead, the selectivity of sRNA binding is determined by the coincident expression of the AGO and sRNA-generating loci, and epigenetic modification is influenced by interactions between the AGO protein and the different target loci. These findings highlight the importance of tissue specificity and AGO-associated proteins in influencing epigenetic modifications.

358 citations


Cited by
More filters
Journal ArticleDOI
03 Nov 1989-Science
TL;DR: It appears that some checkpoints are eliminated during the early embryonic development of some organisms; this fact may pose special problems for the fidelity of embryonic cell division.
Abstract: The events of the cell cycle of most organisms are ordered into dependent pathways in which the initiation of late events is dependent on the completion of early events. In eukaryotes, for example, mitosis is dependent on the completion of DNA synthesis. Some dependencies can be relieved by mutation (mitosis may then occur before completion of DNA synthesis), suggesting that the dependency is due to a control mechanism and not an intrinsic feature of the events themselves. Control mechanisms enforcing dependency in the cell cycle are here called checkpoints. Elimination of checkpoints may result in cell death, infidelity in the distribution of chromosomes or other organelles, or increased susceptibility to environmental perturbations such as DNA damaging agents. It appears that some checkpoints are eliminated during the early embryonic development of some organisms; this fact may pose special problems for the fidelity of embryonic cell division.

3,048 citations

Journal ArticleDOI
Paul Nurse1
05 Apr 1990-Nature
TL;DR: The onset of M-phase is regulated by a mechanism common to all eukaryotic cells and requires p34cdc2 dephosphorylation and association with cyclin.
Abstract: The onset of M-phase is regulated by a mechanism common to all eukaryotic cells. Entry into M-phase is determined by activation of the p34cdc2 protein kinase which requires p34cdc2 dephosphorylation and association with cyclin.

2,798 citations

Journal Article
TL;DR: Research data show that more resistant stem cells than common cancer cells exist in cancer patients, and to identify unrecognized differences between cancer stem cells and cancer cells might be able to develop effective classification, diagnose and treat for cancer.
Abstract: Stem cells are defined as cells able to both extensively self-renew and differentiate into progenitors. Research data show that more resistant stem cells than common cancer cells exist in cancer patients.To identify unrecognized differences between cancer stem cells and cancer cells might be able to develope effective classification,diagnose and treat ment for cancer.

2,194 citations

Journal ArticleDOI
TL;DR: In this paper, a series of fluorescent organelle markers based on well-established targeting sequences that can be used for co-localization studies was generated for the Arabidopsis organelle marker set.
Abstract: Genome sequencing has resulted in the identification of a large number of uncharacterized genes with unknown functions It is widely recognized that determination of the intracellular localization of the encoded proteins may aid in identifying their functions To facilitate these localization experiments, we have generated a series of fluorescent organelle markers based on well-established targeting sequences that can be used for co-localization studies In particular, this organelle marker set contains indicators for the endoplasmic reticulum, the Golgi apparatus, the tonoplast, peroxisomes, mitochondria, plastids and the plasma membrane All markers were generated with four different fluorescent proteins (FP) (green, cyan, yellow or red FPs) in two different binary plasmids for kanamycin or glufosinate selection, respectively, to allow for flexible combinations The labeled organelles displayed characteristic morphologies consistent with previous descriptions that could be used for their positive identification Determination of the intracellular distribution of three previously uncharacterized proteins demonstrated the usefulness of the markers in testing predicted subcellular localizations This organelle marker set should be a valuable resource for the plant community for such co-localization studies In addition, the Arabidopsis organelle marker lines can also be employed in plant cell biology teaching labs to demonstrate the distribution and dynamics of these organelles

1,782 citations

Journal ArticleDOI
TL;DR: Systematic screens for knockout mutations in MYB genes, followed by phenotypic analyses and the dissection of mutants with interesting phenotypes, have started to unravel the functions of the 125 R2R3-MYB genes in Arabidopsis thaliana.

1,779 citations