scispace - formally typeset
Search or ask a question
Author

John I. Bell

Bio: John I. Bell is an academic researcher from University of Oxford. The author has contributed to research in topics: Major histocompatibility complex & T-cell receptor. The author has an hindex of 79, co-authored 221 publications receiving 29220 citations. Previous affiliations of John I. Bell include Wellcome Trust Centre for Human Genetics & Churchill Hospital.


Papers
More filters
Journal ArticleDOI
04 Oct 1996-Science
TL;DR: Tetramers of human lymphocyte antigen A2 that were complexed with two different human immunodeficiency virus (HIV)-derived peptides or with a peptide derived from influenza A matrix protein bound to peptide-specific cytotoxic T cells in vitro and to T cells from the blood of HIV-infected individuals and correlated well with cytotoxicity assays.
Abstract: Identification and characterization of antigen-specific T lymphocytes during the course of an immune response is tedious and indirect. To address this problem, the peptide-major histocompatability complex (MHC) ligand for a given population of T cells was multimerized to make soluble peptide-MHC tetramers. Tetramers of human lymphocyte antigen A2 that were complexed with two different human immunodeficiency virus (HIV)-derived peptides or with a peptide derived from influenza A matrix protein bound to peptide-specific cytotoxic T cells in vitro and to T cells from the blood of HIV-infected individuals. In general, tetramer binding correlated well with cytotoxicity assays. This approach should be useful in the analysis of T cells specific for infectious agents, tumors, and autoantigens.

3,824 citations

Journal ArticleDOI
19 Feb 1998-Nature
TL;DR: The identification of ligands for HLA-E is reported, which shows that a subset of HLA class I alleles has been shown to inhibit killing by CD94/NKG2A+ NK-cell clones, and only the HLA alleles that possess a leader peptide capable of upregulating Hla-E surface expression confer resistance toNK-cell-mediated lysis.
Abstract: The protein HLA-E is a non-classical major histocompatibility complex (MHC) molecule of limited sequence variability. Its expression on the cell surface is regulated by the binding of peptides derived from the signal sequence of some other MHC class I molecules. Here we report the identification of ligands for HLA-E. We constructed tetramers in which recombinant HLA-E and beta2-microglobulin were refolded with an MHC leader-sequence peptide, biotinylated, and conjugated to phycoerythrin-labelled Extravidin. This HLA-E tetramer bound to natural killer (NK) cells and a small subset of T cells from peripheral blood. On transfectants, the tetramer bound to the CD94/NKG2A, CD94/NKGK2B and CD94/NKG2C NK cell receptors, but did not bind to the immunoglobulin family of NK cell receptors (KIR). Surface expression of HLA-E was enough to protect target cells from lysis by CD94/NKG2A+ NK-cell clones. A subset of HLA class I alleles has been shown to inhibit killing by CD94/NKG2A+ NK-cell clones. Only the HLA alleles that possess a leader peptide capable of upregulating HLA-E surface expression confer resistance to NK-cell-mediated lysis, implying that their action is mediated by HLA-E, the predominant ligand for the NK cell inhibitory receptor CD94/NKG2A.

2,059 citations

Journal ArticleDOI
15 Oct 1987-Nature
TL;DR: Analysis of DNA sequences from diabetics indicates that alleles ofHLA-DQβ determine both disease susceptibility and resistance, and that the structure of the DQ molecule, in particular residue 57 of the β-chain, specifies the autoimmune response against the insulin-producing islet cells.
Abstract: Over half of the inherited predisposition to insulin-dependent diabetes mellitus maps to the region of chromosome 6 that contains the highly polymorphic HLA class II genes which determine immune responsiveness. Analysis of DNA sequences from diabetics indicates that alleles of HLA-DQ beta determine both disease susceptibility and resistance, and that the structure of the DQ molecule, in particular residue 57 of the beta-chain, specifies the autoimmune response against the insulin-producing islet cells.

1,909 citations

Journal ArticleDOI
TL;DR: With the discovery of massive numbers of genetic markers and the development of better tools for genotyping, association studies will inevitably proliferate and now is the time to consider critically the design of such studies to avoid the mistakes of the past and to maximize their potential to identify new components of disease.
Abstract: Assessing the association between DNA variants and disease has been used widely to identify regions of the genome and candidate genes that contribute to disease. However, there are numerous examples of associations that cannot be replicated, which has led to skepticism about the utility of the approach for common conditions. With the discovery of massive numbers of genetic markers and the development of better tools for genotyping, association studies will inevitably proliferate. Now is the time to consider critically the design of such studies, to avoid the mistakes of the past and to maximize their potential to identify new components of disease.

1,499 citations

Journal ArticleDOI
26 May 2005-Nature
TL;DR: The mouse genome is systematically screened for autoimmune regulators to isolate a mouse strain, sanroque, with severe autoimmune disease resulting from a single recessive defect in a previously unknown mechanism for repressing antibody responses to self.
Abstract: Despite the sequencing of the human and mouse genomes, few genetic mechanisms for protecting against autoimmune disease are currently known. Here we systematically screen the mouse genome for autoimmune regulators to isolate a mouse strain, sanroque, with severe autoimmune disease resulting from a single recessive defect in a previously unknown mechanism for repressing antibody responses to self. The sanroque mutation acts within mature T cells to cause formation of excessive numbers of follicular helper T cells and germinal centres. The mutation disrupts a repressor of ICOS, an essential co-stimulatory receptor for follicular T cells, and results in excessive production of the cytokine interleukin-21. sanroque mice fail to repress diabetes-causing T cells, and develop high titres of autoantibodies and a pattern of pathology consistent with lupus. The causative mutation is in a gene of previously unknown function, roquin (Rc3h1), which encodes a highly conserved member of the RING-type ubiquitin ligase protein family. The Roquin protein is distinguished by the presence of a CCCH zinc-finger found in RNA-binding proteins, and localization to cytosolic RNA granules implicated in regulating messenger RNA translation and stability.

816 citations


Cited by
More filters
Journal ArticleDOI
Rafael Lozano1, Mohsen Naghavi1, Kyle J Foreman2, Stephen S Lim1  +192 moreInstitutions (95)
TL;DR: The Global Burden of Diseases, Injuries, and Risk Factors Study 2010 aimed to estimate annual deaths for the world and 21 regions between 1980 and 2010 for 235 causes, with uncertainty intervals (UIs), separately by age and sex, using the Cause of Death Ensemble model.

11,809 citations

Journal ArticleDOI
Paul Burton1, David Clayton2, Lon R. Cardon, Nicholas John Craddock3  +192 moreInstitutions (4)
07 Jun 2007-Nature
TL;DR: This study has demonstrated that careful use of a shared control group represents a safe and effective approach to GWA analyses of multiple disease phenotypes; generated a genome-wide genotype database for future studies of common diseases in the British population; and shown that, provided individuals with non-European ancestry are excluded, the extent of population stratification in theBritish population is generally modest.
Abstract: There is increasing evidence that genome-wide association ( GWA) studies represent a powerful approach to the identification of genes involved in common human diseases. We describe a joint GWA study ( using the Affymetrix GeneChip 500K Mapping Array Set) undertaken in the British population, which has examined similar to 2,000 individuals for each of 7 major diseases and a shared set of similar to 3,000 controls. Case-control comparisons identified 24 independent association signals at P < 5 X 10(-7): 1 in bipolar disorder, 1 in coronary artery disease, 9 in Crohn's disease, 3 in rheumatoid arthritis, 7 in type 1 diabetes and 3 in type 2 diabetes. On the basis of prior findings and replication studies thus-far completed, almost all of these signals reflect genuine susceptibility effects. We observed association at many previously identified loci, and found compelling evidence that some loci confer risk for more than one of the diseases studied. Across all diseases, we identified a large number of further signals ( including 58 loci with single-point P values between 10(-5) and 5 X 10(-7)) likely to yield additional susceptibility loci. The importance of appropriately large samples was confirmed by the modest effect sizes observed at most loci identified. This study thus represents a thorough validation of the GWA approach. It has also demonstrated that careful use of a shared control group represents a safe and effective approach to GWA analyses of multiple disease phenotypes; has generated a genome-wide genotype database for future studies of common diseases in the British population; and shown that, provided individuals with non-European ancestry are excluded, the extent of population stratification in the British population is generally modest. Our findings offer new avenues for exploring the pathophysiology of these important disorders. We anticipate that our data, results and software, which will be widely available to other investigators, will provide a powerful resource for human genetics research.

9,244 citations

Journal ArticleDOI
01 Nov 2012-Nature
TL;DR: It is shown that evolutionary conservation and coding consequence are key determinants of the strength of purifying selection, that rare-variant load varies substantially across biological pathways, and that each individual contains hundreds of rare non-coding variants at conserved sites, such as motif-disrupting changes in transcription-factor-binding sites.
Abstract: By characterizing the geographic and functional spectrum of human genetic variation, the 1000 Genomes Project aims to build a resource to help to understand the genetic contribution to disease. Here we describe the genomes of 1,092 individuals from 14 populations, constructed using a combination of low-coverage whole-genome and exome sequencing. By developing methods to integrate information across several algorithms and diverse data sources, we provide a validated haplotype map of 38 million single nucleotide polymorphisms, 1.4 million short insertions and deletions, and more than 14,000 larger deletions. We show that individuals from different populations carry different profiles of rare and common variants, and that low-frequency variants show substantial geographic differentiation, which is further increased by the action of purifying selection. We show that evolutionary conservation and coding consequence are key determinants of the strength of purifying selection, that rare-variant load varies substantially across biological pathways, and that each individual contains hundreds of rare non-coding variants at conserved sites, such as motif-disrupting changes in transcription-factor-binding sites. This resource, which captures up to 98% of accessible single nucleotide polymorphisms at a frequency of 1% in related populations, enables analysis of common and low-frequency variants in individuals from diverse, including admixed, populations.

7,710 citations

Journal ArticleDOI
28 Aug 1998-Science
TL;DR: Apoptosis is a cell suicide mechanism that enables metazoans to control cell number in tissues and to eliminate individual cells that threaten the animal's survival.
Abstract: Apoptosis is a cell suicide mechanism that enables metazoans to control cell number in tissues and to eliminate individual cells that threaten the animal's survival. Certain cells have unique sensors, termed death receptors, on their surface. Death receptors detect the presence of extracellular death signals and, in response, they rapidly ignite the cell's intrinsic apoptosis machinery.

5,968 citations

Journal ArticleDOI
31 May 2001-Nature
TL;DR: It is suggested that the NOD2 gene product confers susceptibility to Crohn's disease by altering the recognition of these components and/or by over-activating NF-kB in monocytes, thus documenting a molecular model for the pathogenic mechanism of Crohn’s disease that can now be further investigated.
Abstract: Crohn's disease and ulcerative colitis, the two main types of chronic inflammatory bowel disease, are multifactorial conditions of unknown aetiology A susceptibility locus for Crohn's disease has been mapped to chromosome 16 Here we have used a positional-cloning strategy, based on linkage analysis followed by linkage disequilibrium mapping, to identify three independent associations for Crohn's disease: a frameshift variant and two missense variants of NOD2, encoding a member of the Apaf-1/Ced-4 superfamily of apoptosis regulators that is expressed in monocytes These NOD2 variants alter the structure of either the leucine-rich repeat domain of the protein or the adjacent region NOD2 activates nuclear factor NF-kB; this activating function is regulated by the carboxy-terminal leucine-rich repeat domain, which has an inhibitory role and also acts as an intracellular receptor for components of microbial pathogens These observations suggest that the NOD2 gene product confers susceptibility to Crohn's disease by altering the recognition of these components and/or by over-activating NF-kB in monocytes, thus documenting a molecular model for the pathogenic mechanism of Crohn's disease that can now be further investigated

5,388 citations