scispace - formally typeset
Search or ask a question
Author

John Iacono

Other affiliations: New York University, Aarhus University, Rutgers University  ...read more
Bio: John Iacono is an academic researcher from Université libre de Bruxelles. The author has contributed to research in topics: Data structure & Amortized analysis. The author has an hindex of 24, co-authored 170 publications receiving 2130 citations. Previous affiliations of John Iacono include New York University & Aarhus University.


Papers
More filters
Book ChapterDOI
16 Dec 2016
TL;DR: In this article, the first potential function for pairing heaps with linear range was presented, which implies that the runtime of a short sequence of operations is faster than previously known, and is also simpler than the only other potential function known to give constant amortized time for insertion.
Abstract: We present the first potential function for pairing heaps with linear range. This implies that the runtime of a short sequence of operations is faster than previously known. It is also simpler than the only other potential function known to give constant amortized time for insertion.

4 citations

Posted Content
TL;DR: In this paper, it was shown that the online binary search tree data structure GreedyASS performs asymptotically as well on a sufficiently long sequence of searches as any static binary search trees where each search begins from the previous search (rather than the root).
Abstract: It is shown that the online binary search tree data structure GreedyASS performs asymptotically as well on a sufficiently long sequence of searches as any static binary search tree where each search begins from the previous search (rather than the root). This bound is known to be equivalent to assigning each item $i$ in the search tree a positive weight $w_i$ and bounding the search cost of an item in the search sequence $s_1,\ldots,s_m$ by $$O\left(1+ \log \frac{\displaystyle \sum_{\min(s_{i-1},s_i) \leq x \leq \max(s_{i-1},s_i)}w_x}{\displaystyle \min(w_{s_i},w_{s_{i-1}})} \right)$$ amortized. This result is the strongest finger-type bound to be proven for binary search trees. By setting the weights to be equal, one observes that our bound implies the dynamic finger bound. Compared to the previous proof of the dynamic finger bound for Splay trees, our result is significantly shorter, stronger, simpler, and has reasonable constants.

4 citations

Book ChapterDOI
20 Jul 2011
TL;DR: It is proved that the working-set bound is asymptotically equivalent to the unified bound (which is the minimum per operation among the static-finger, static-optimality, and working- set bounds) and that these bounds are the best possible with respect to the considered measures.
Abstract: We present a priority queue that supports the operations: insert in worst-case constant time, and delete, delete-min, find-min and decrease-key on an element x in worst-case $O(\lg(\min\{w_x, q_x\}+2))$ time, where wx (respectively, qx) is the number of elements that were accessed after (respectively, before) the last access of x and are still in the priority queue at the time when the corresponding operation is performed. Our priority queue then has both the working-set and the queueish properties; and, more strongly, it satisfies these properties in the worst-case sense. We also argue that these bounds are the best possible with respect to the considered measures. Moreover, we modify our priority queue to satisfy a new unifying property — the time-finger property — which encapsulates both the working-set and the queueish properties. In addition, we prove that the working-set bound is asymptotically equivalent to the unified bound (which is the minimum per operation among the static-finger, static-optimality, and working-set bounds). This latter result is of tremendous interest by itself as it had gone unnoticed since the introduction of such bounds by Sleater and Tarjan [10]. Together, these results indicate that our priority queue also satisfies the static-finger, the static-optimality and the unified bounds.

4 citations

Proceedings ArticleDOI
14 Apr 2011
TL;DR: This work considers the dictionary problem in external memory and improves the update time of the well-known buffer tree by roughly a logarithmic factor and presents a lower bound in the cell-probe model showing that the data structure is optimal.
Abstract: We consider the dictionary problem in external memory and improve the update time of the wellknown buffer tree by roughly a logarithmic factor. For any λ ≥ max{lg lg n, logM/B(n/B)}, we can support updates in time O( λ B ) and queries in time O(logλ n). We also present a lower bound in the cell-probe model showing that our data structure is optimal. In the RAM, hash tables have been use to solve the dictionary problem faster than binary search for more than half a century. By contrast, our data structure is the first to beat the comparison barrier in external memory. Ours is also the first data structure to depart convincingly from the indivisibility paradigm.

3 citations

Proceedings ArticleDOI
01 Jun 2018
TL;DR: This contribution gives a compact encoding for abstract order types that allows efficient query of the orientation of any triple and shows how to shorten the encoding to O(n^2) bits for realizable order types, giving the first subquadratic encoding for those order types with fast orientation queries.
Abstract: For many algorithms dealing with sets of points in the plane, the only relevant information carried by the input is the combinatorial configuration of the points: the orientation of each triple of points in the set (clockwise, counterclockwise, or collinear). This information is called the order type of the point set. In the dual, realizable order types and abstract order types are combinatorial analogues of line arrangements and pseudoline arrangements. Too often in the literature we analyze algorithms in the real-RAM model for simplicity, putting aside the fact that computers as we know them cannot handle arbitrary real numbers without some sort of encoding. Encoding an order type by the integer coordinates of a realizing point set is known to yield doubly exponential coordinates in some cases. Other known encodings can achieve quadratic space or fast orientation queries, but not both. In this contribution, we give a compact encoding for abstract order types that allows efficient query of the orientation of any triple: the encoding uses O(n^2) bits and an orientation query takes O(log n) time in the word-RAM model with word size w >= log n. This encoding is space-optimal for abstract order types. We show how to shorten the encoding to O(n^2 {(log log n)}^2 / log n) bits for realizable order types, giving the first subquadratic encoding for those order types with fast orientation queries. We further refine our encoding to attain O(log n/log log n) query time at the expense of a negligibly larger space requirement. In the realizable case, we show that all those encodings can be computed efficiently. Finally, we generalize our results to the encoding of point configurations in higher dimension.

3 citations


Cited by
More filters
Book
02 Jan 1991

1,377 citations

Journal Article
TL;DR: A deterministic algorithm for triangulating a simple polygon in linear time is given, using the polygon-cutting theorem and the planar separator theorem, whose role is essential in the discovery of new diagonals.
Abstract: We give a deterministic algorithm for triangulating a simple polygon in linear time. The basic strategy is to build a coarse approximation of a triangulation in a bottom-up phase and then use the information computed along the way to refine the triangulation in a top-down phase. The main tools used are the polygon-cutting theorem, which provides us with a balancing scheme, and the planar separator theorem, whose role is essential in the discovery of new diagonals. Only elementary data structures are required by the algorithm. In particular, no dynamic search trees, of our algorithm.

632 citations

01 Jan 1978

366 citations

Journal ArticleDOI
TL;DR: In this article, scale-independent elementary geometric constructions and constrained optimization algorithms can be used to determine spatially modulated patterns that yield approximations to given surfaces of constant or varying curvature.
Abstract: Origami describes rules for creating folded structures from patterns on a flat sheet, but does not prescribe how patterns can be designed to fit target shapes. Here, starting from the simplest periodic origami pattern that yields one-degree-of-freedom collapsible structures-we show that scale-independent elementary geometric constructions and constrained optimization algorithms can be used to determine spatially modulated patterns that yield approximations to given surfaces of constant or varying curvature. Paper models confirm the feasibility of our calculations. We also assess the difficulty of realizing these geometric structures by quantifying the energetic barrier that separates the metastable flat and folded states. Moreover, we characterize the trade-off between the accuracy to which the pattern conforms to the target surface, and the effort associated with creating finer folds. Our approach enables the tailoring of origami patterns to drape complex surfaces independent of absolute scale, as well as the quantification of the energetic and material cost of doing so.

336 citations

Journal ArticleDOI
TL;DR: The proposed method incorporates the voting method into the popular extreme learning machine (ELM) in classification applications and generally outperforms the original ELM algorithm as well as several recent classification algorithms.

329 citations