scispace - formally typeset
Search or ask a question
Author

John Imbrie

Other affiliations: Columbia University
Bio: John Imbrie is an academic researcher from Brown University. The author has contributed to research in topics: Milankovitch cycles & Ice age. The author has an hindex of 29, co-authored 50 publications receiving 14815 citations. Previous affiliations of John Imbrie include Columbia University.

Papers
More filters
Journal ArticleDOI
10 Dec 1976-Science
TL;DR: It is concluded that changes in the earth's orbital geometry are the fundamental cause of the succession of Quaternary ice ages and a model of future climate based on the observed orbital-climate relationships, but ignoring anthropogenic effects, predicts that the long-term trend over the next sevem thousand years is toward extensive Northern Hemisphere glaciation.
Abstract: 1) Three indices of global climate have been monitored in the record of the past 450,000 years in Southern Hemisphere ocean-floor sediments. 2) Over the frequency range 10(-4) to 10(-5) cycle per year, climatic variance of these records is concentrated in three discrete spectral peaks at periods of 23,000, 42,000, and approximately 100,000 years. These peaks correspond to the dominant periods of the earth's solar orbit, and contain respectively about 10, 25, and 50 percent of the climatic variance. 3) The 42,000-year climatic component has the same period as variations in the obliquity of the earth's axis and retains a constant phase relationship with it. 4) The 23,000-year portion of the variance displays the same periods (about 23,000 and 19,000 years) as the quasi-periodic precession index. 5) The dominant, 100,000-year climatic [See table in the PDF file] component has an average period close to, and is in phase with, orbital eccentricity. Unlike the correlations between climate and the higher-frequency orbital variations (which can be explained on the assumption that the climate system responds linearly to orbital forcing), an explanation of the correlation between climate and eccentricity probably requires an assumption of nonlinearity. 6) It is concluded that changes in the earth's orbital geometry are the fundamental cause of the succession of Quaternary ice ages. 7) A model of future climate based on the observed orbital-climate relationships, but ignoring anthropogenic effects, predicts that the long-term trend over the next sevem thousand years is toward extensive Northern Hemisphere glaciation.

3,408 citations

Journal ArticleDOI
TL;DR: Using the concept of "orbital tuning", a continuous, high-resolution deep-sea chronostratigraphy has been developed spanning the last 300,000 yr as mentioned in this paper.

3,256 citations

BookDOI
TL;DR: Adem et al. as discussed by the authors simulate the equilibrium climate at five different stages of the last deglaciation, in order to assess the respective role of different forcings: insolation, ice boundaries and sea surface temperature.
Abstract: 1 2 2 . 2 d J. Adem , A· Bergzr , Ph. Gaspar , P. Pest1aux an J.P. van Ypersele 1 Centro de Ciencias de la Atmosfera, UNAM, 04510 ~exico D.F. Universit~ Catholique de Louvain, Institut d 'Astronomie et de G~ophysique G. Lemattre, B-1348 Louvain-la-Neuve, Belgium The objective of the present work is to simulate 'the equilibrium climate at 5 different stages of the last deglaciation, in order to assess the respective role of different forcings: insolation, ice boundaries and sea surface temperature. We use as forcing the radiation data from Berger ( 1), the ice sheet boundaries from Denton (2) and the sea surface temperature from CLIMAP (3). In these experiments we use Adem's thermodynamic mode 1 which is a hemispheric grid model with a realistic distribution of continents and oceans and which includes these three forcings as input data. The procedure used is to simulate first the climate for present conditions and then for the 5 stages of the deglaciation for which Denton gives ice boundaries : 18, 13, 10, 8 and 7 kyr BP.

1,234 citations

Journal ArticleDOI
TL;DR: Starr et al. as mentioned in this paper showed that the 23,000 and 41,000-year cycles of glaciation are continuous, linear responses to orbitally driven changes in the Arctic radiation budget, and used the phase progression in each climatic cycle to identify the main pathways along which the initial, local responses to radiation are propagated by the atmosphere and ocean.
Abstract: Time series of ocean properties provide a measure of global ice volume and monitor key features of the wind-driven and density-driven circulations over the past 400,000 years. Cycles with periods near 23,000, 41,000, and 100,000 years dominate this climatic narrative. When the narrative is examined in a geographic array of time series, the phase of each climatic oscillation is seen to progress through the system in essentially the same geographic sequence in all three cycles. We argue that the 23,000- and 41,000-year cycles of glaciation are continuous, linear responses to orbitally driven changes in the Arctic radiation budget; and we use the phase progression in each climatic cycle to identify the main pathways along which the initial, local responses to radiation are propagated by the atmosphere and ocean. Early in this progression, deep waters of the Southern Ocean appear to act as a carbon trap. To stimulate new observations and modeling efforts, we offer a process model that gives a synoptic view of climate at the four end-member states needed to describe the system's evolution, and we propose a dynamic system model that explains the phase progression along causal pathways by specifying inertial constants in a chain of four subsystems. “Solutions to problems involving systems of such complexity are not born full grown like Athena from the head of Zeus. Rather they evolve slowly, in stages, each of which requires a pause to examine data at great lengths in order to guarantee a sure footing and to properly choose the next step.” —Victor P. Starr

939 citations

Journal ArticleDOI
29 Feb 1980-Science
TL;DR: This article summarizes how the theory has evolved since the pioneer studies of James Croll and Milutin Milankovitch, reviews recent evidence that supports the theory, and argues that a major opportunity is at hand to investigate the physical mechanisms by which the climate system responds to orbital forcing.
Abstract: According to the astronomical theory of climate, variations in the earth's orbit are the fundamental cause of the succession of Pleistocene ice ages. This article summarizes how the theory has evolved since the pioneer studies of James Croll and Milutin Milankovitch, reviews recent evidence that supports the theory, and argues that a major opportunity is at hand to investigate the physical mechanisms by which the climate system responds to orbital forcing. After a survey of the kinds of models that have been applied to this problem, a strategy is suggested for building simple, physically motivated models, and a time-dependent model is developed that simulates the history of planetary glaciation for the past 500,000 years. Ignoring anthropogenic and other possible sources of variation acting at frequencies higher than one cycle per 19,000 years, this model predicts that the long-term cooling trend which began some 6000 years ago will continue for the next 23,000 years.

926 citations


Cited by
More filters
Journal ArticleDOI
27 Apr 2001-Science
TL;DR: This work focuses primarily on the periodic and anomalous components of variability over the early portion of this era, as constrained by the latest generation of deep-sea isotope records.
Abstract: Since 65 million years ago (Ma), Earth's climate has undergone a significant and complex evolution, the finer details of which are now coming to light through investigations of deep-sea sediment cores. This evolution includes gradual trends of warming and cooling driven by tectonic processes on time scales of 10(5) to 10(7) years, rhythmic or periodic cycles driven by orbital processes with 10(4)- to 10(6)-year cyclicity, and rare rapid aberrant shifts and extreme climate transients with durations of 10(3) to 10(5) years. Here, recent progress in defining the evolution of global climate over the Cenozoic Era is reviewed. We focus primarily on the periodic and anomalous components of variability over the early portion of this era, as constrained by the latest generation of deep-sea isotope records. We also consider how this improved perspective has led to the recognition of previously unforeseen mechanisms for altering climate.

8,903 citations

Journal ArticleDOI
TL;DR: In this paper, a 53-Myr stack (LR04) of benthic δ18O records from 57 globally distributed sites aligned by an automated graphic correlation algorithm is presented.
Abstract: [1] We present a 53-Myr stack (the “LR04” stack) of benthic δ18O records from 57 globally distributed sites aligned by an automated graphic correlation algorithm This is the first benthic δ18O stack composed of more than three records to extend beyond 850 ka, and we use its improved signal quality to identify 24 new marine isotope stages in the early Pliocene We also present a new LR04 age model for the Pliocene-Pleistocene derived from tuning the δ18O stack to a simple ice model based on 21 June insolation at 65°N Stacked sedimentation rates provide additional age model constraints to prevent overtuning Despite a conservative tuning strategy, the LR04 benthic stack exhibits significant coherency with insolation in the obliquity band throughout the entire 53 Myr and in the precession band for more than half of the record The LR04 stack contains significantly more variance in benthic δ18O than previously published stacks of the late Pleistocene as the result of higher-resolution records, a better alignment technique, and a greater percentage of records from the Atlantic Finally, the relative phases of the stack's 41- and 23-kyr components suggest that the precession component of δ18O from 27–16 Ma is primarily a deep-water temperature signal and that the phase of δ18O precession response changed suddenly at 16 Ma

6,186 citations

01 Jan 2013
TL;DR: The recent completion of drilling at Vostok station in East Antarctica has allowed the extension of the ice record of atmospheric composition and climate to the past four glacial-interglacial cycles.
Abstract: The recent completion of drilling at Vostok station in East Antarctica has allowed the extension of the ice record of atmospheric composition and climate to the past four glacial–interglacial cycles. The succession of changes through each climate cycle and termination was similar, and atmospheric and climate properties oscillated between stable bounds. Interglacial periods differed in temporal evolution and duration. Atmospheric concentrations of carbon dioxide and methane correlate well with Antarctic air-temperature throughout the record. Present-day atmospheric burdens of these two important greenhouse gases seem to have been unprecedented during the past 420,000 years.

5,469 citations

Journal ArticleDOI
03 Jun 1999-Nature
TL;DR: The recent completion of drilling at Vostok station in East Antarctica has allowed the extension of the ice record of atmospheric composition and climate to the past four glacial-interglacial cycles as discussed by the authors.
Abstract: The recent completion of drilling at Vostok station in East Antarctica has allowed the extension of the ice record of atmospheric composition and climate to the past four glacial–interglacial cycles. The succession of changes through each climate cycle and termination was similar, and atmospheric and climate properties oscillated between stable bounds. Interglacial periods differed in temporal evolution and duration. Atmospheric concentrations of carbon dioxide and methane correlate well with Antarctic air-temperature throughout the record. Present-day atmospheric burdens of these two important greenhouse gases seem to have been unprecedented during the past 420,000 years.

5,109 citations

Journal ArticleDOI
15 Jul 1993-Nature
TL;DR: In this paper, the authors present a detailed stable isotope record for the full length of the Greenland Ice-core Project Summit ice core, extending over the past 250 kyr according to a calculated timescale, and find that climate instability was not confined to the last glaciation, but appears also have been marked during the last interglacial (as explored more fully in a companion paper), and during the previous Saale-Holstein glacial cycle.
Abstract: RECENT results1,2 from two ice cores drilled in central Greenland have revealed large, abrupt climate changes of at least regional extent during the late stages of the last glaciation, suggesting that climate in the North Atlantic region is able to reorganize itself rapidly, perhaps even within a few decades. Here we present a detailed stable-isotope record for the full length of the Greenland Ice-core Project Summit ice core, extending over the past 250 kyr according to a calculated timescale. We find that climate instability was not confined to the last glaciation, but appears also to have been marked during the last interglacial (as explored more fully in a companion paper3) and during the previous Saale–Holstein glacial cycle. This is in contrast with the extreme stability of the Holocene, suggesting that recent climate stability may be the exception rather than the rule. The last interglacial seems to have lasted longer than is implied by the deep-sea SPECMAP record4, in agreement with other land-based observations5,6. We suggest that climate instability in the early part of the last interglacial may have delayed the melting of the Saalean ice sheets in America and Eurasia, perhaps accounting for this discrepancy.

4,367 citations