scispace - formally typeset
Search or ask a question
Author

John J. Boeckl

Bio: John J. Boeckl is an academic researcher from Wright-Patterson Air Force Base. The author has contributed to research in topics: Graphene & Silicon. The author has an hindex of 11, co-authored 26 publications receiving 511 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A novel growth method (carbon molecular beam epitaxy (CMBE) has been developed to produce high-quality and large-area epitaxial graphene that demonstrates significantly improved controllability of the graphene growth.
Abstract: A novel growth method (carbon molecular beam epitaxy (CMBE)) has been developed to produce high-quality and large-area epitaxial graphene. This method demonstrates significantly improved controllability of the graphene growth. CMBE with C(60) produces AB stacked graphene, while growth with the graphite filament results in non-Bernal stacked graphene layers with a Dirac-like electronic structure, which is similar to graphene grown by thermal decomposition on SiC (000-1).

112 citations

Journal ArticleDOI
TL;DR: In this article, the effects of oxygen adsorption and diffusion on the stability, morphology, and charge transfer in single-layer graphene with structural point defects were investigated by density functional theory.
Abstract: In this work, effects of oxygen adsorption and diffusion on the stability, morphology, and charge transfer in single-layer graphene with structural point defects were investigated by density functional theory, specifically for the experimentally characterized monovacancy, double-vacancy, 555–777, 5555–6–7777, and Stone-Wales defects. The theoretical analysis demonstrated strengthened oxygen adsorption on defective graphene as compared to pristine graphene, resulting in trapping of the oxygen onto defects. This was accompanied by significant charge transfer of up to 3e, unlike for pristine graphene. At the same time, atomic oxygen diffuses at different rates dependent on the local environment, however with relatively low barriers (mostly <1 eV), lower than for pristine graphene, thus, revealing an interplay between diffusion and adsorption in this case. Addition of a nonempirical correction to the exchange-correlation functional to take into account London dispersion demonstrated that the vdW-DF PBE functi...

83 citations

Journal ArticleDOI
TL;DR: The developed GOx-GQDs biosensor responds efficiently and linearly to the presence of glucose over concentrations ranging between 10 μM and 3 mM with a limit of detection of 1.35 μM, opening up potential sensing applications in medicine as well as bio-nanotechnology.
Abstract: Graphene quantum dots (GQDs), derived from functionalized graphene precursors are graphene sheets a few nanometers in the lateral dimension having a several-layer thickness. They are zero-dimensional materials with quantum confinement and edge site effects. Intense research interest in GQDs is attributed to their unique physicochemical phenomena arising from the sp2-bonded carbon nanocore surrounded with edged plane functional moieties. In this work, GQDs are synthesized by both solvothermal and hydrothermal techniques, with the optimal size of 5 nm determined using high-resolution transmission electron microscopy, with additional UV-Vis absorption and fluorescence spectroscopy, revealing electronic band signatures in the blue-violet region. Their potential in fundamental (direct electron transfer) and applied (enzyme-based glucose biosensor) electrochemistry has been practically realized. Glucose oxidase (GOx) was immobilized on glassy carbon (GC) electrodes modified with GQDs and functionalized graphene (graphene oxide and reduced form). The cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy are used for characterizing the direct electron transfer kinetics and electrocatalytical biosensing. The well-defined quasi-reversible redox peaks were observed under various electrochemical environment and conditions (pH, concentration, scan rate) to determine the diffusion coefficient (D) and first-order electron transfer rate (kET). The cyclic voltammetry curves showed homogeneous ion transport behavior for GQD and other graphene-based samples with D ranging between 8.45 × 10−9 m2 s−1 and 3 × 10−8 m2 s−1 following the order of GO < rGO < GQD < GQD (with FcMeOH as redox probe) < GOx/rGO < GOx/GO < HRP/GQDs < GOx/GQDs. The developed GOx-GQDs biosensor responds efficiently and linearly to the presence of glucose over concentrations ranging between 10 μM and 3 mM with a limit of detection of 1.35 μM and sensitivity of 0.00769 μA μM−1·cm−2 as compared with rGO (0.025 μA μM−1 cm−2, 4.16 μM) and GO (0.064 μA μM−1 cm−2, 4.82 μM) nanosheets. The relatively high performance and stability of GQDs is attributed to a sufficiently large surface-to-volume ratio, excellent biocompatibility, abundant hydrophilic edges, and a partially hydrophobic plane that favors GOx adsorption on the electrode surface and versatile architectures to ensure rapid charge transfer and electron/ion conduction (<10 ms). We also carried out similar studies with other enzymatic protein biomolecules on electrode surfaces prepared from GQD precursors for electrochemical comparison, thus opening up potential sensing applications in medicine as well as bio-nanotechnology.

79 citations

Journal ArticleDOI
14 Sep 2007-Langmuir
TL;DR: By lowering the reaction temperature during metal ion reduction in a reverse micelle system, gold nanoparticle size can be subtly tuned from 6.6 to 2.2 nm in diameter, enabling a wide range of products obtainable via a simple, quick, reproducible synthesis.
Abstract: By lowering the reaction temperature during metal ion reduction in a reverse micelle system, gold nanoparticle size can be subtly tuned from 6.6 to 2.2 nm in diameter. Under these reaction conditions, the water-to-surfactant ratio (W value) also plays an important role in controlling the particle size, enabling a wide range of products obtainable via a simple, quick, reproducible synthesis. Particle sizes were measured by HRTEM, and size trends were supported by UV-vis spectroscopy.

58 citations

Journal ArticleDOI
01 Aug 2015-Carbon
TL;DR: In this paper, a method combining first principles density functional theory and tight-binding was developed to distinguish defects in defective single-layer graphene (DSLG) by quantifying defect-induced Raman intensities.

42 citations


Cited by
More filters
Journal ArticleDOI

3,711 citations

Journal ArticleDOI
TL;DR: Composite Photocatalysts Nan Zhang,‚‡ Min-Quan Yang,†,‡ Siqi Liu,*,‡ Yugang Sun,* and Yi-Jun Xu*,† are authors of this paper.
Abstract: Composite Photocatalysts Nan Zhang,†,‡ Min-Quan Yang,†,‡ Siqi Liu,†,‡ Yugang Sun,* and Yi-Jun Xu*,†,‡ †State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, P.R. China ‡College of Chemistry, New Campus, Fuzhou University, Fuzhou 350108, P.R. China Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States

997 citations

Journal ArticleDOI
Kinam Kim1, Jae-Young Choi1, Taek Kim1, Seong-Ho Cho1, Hyun-Jong Chung1 
17 Nov 2011-Nature
TL;DR: Graphene is unlikely to replace silicon completely, however, because of the poor on/off current ratio resulting from its zero bandgap, but it could be used to improve silicon-based devices, in particular in high-speed electronics and optical modulators.
Abstract: As silicon-based electronics approach the limit of improvements to performance and capacity through dimensional scaling, attention in the semiconductor field has turned to graphene, a single layer of carbon atoms arranged in a honeycomb lattice. Its high mobility of charge carriers (electrons and holes) could lead to its use in the next generation of high-performance devices. Graphene is unlikely to replace silicon completely, however, because of the poor on/off current ratio resulting from its zero bandgap. But it could be used to improve silicon-based devices, in particular in high-speed electronics and optical modulators.

707 citations

Journal ArticleDOI
TL;DR: The ability to tune the selectivity of graphene through controlled generation of subnanometer pores addresses a significant challenge in the development of advanced nanoporous graphene membranes for nanofiltration, desalination, gas separation, and other applications.
Abstract: We report selective ionic transport through controlled, high-density, subnanometer diameter pores in macroscopic single-layer graphene membranes. Isolated, reactive defects were first introduced into the graphene lattice through ion bombardment and subsequently enlarged by oxidative etching into permeable pores with diameters of 0.40 ± 0.24 nm and densities exceeding 1012 cm–2, while retaining structural integrity of the graphene. Transport measurements across ion-irradiated graphene membranes subjected to in situ etching revealed that the created pores were cation-selective at short oxidation times, consistent with electrostatic repulsion from negatively charged functional groups terminating the pore edges. At longer oxidation times, the pores allowed transport of salt but prevented the transport of a larger organic molecule, indicative of steric size exclusion. The ability to tune the selectivity of graphene through controlled generation of subnanometer pores addresses a significant challenge in the dev...

706 citations

Journal ArticleDOI
TL;DR: The use of graphene as reinforcement for structural materials is motivated by their exceptional mechanical/functional properties and their unique physical/chemical characteristics as discussed by the authors. But this review focuses on MMCs and CMCs because of their technological importance for structural applications and the unique challenges associated with developing high-temperature composites with nanoparticle reinforcements.
Abstract: This review critically examines the current state of graphene reinforced metal (GNP-MMC) and ceramic matrix composites (GNP-CMC) The use of graphene as reinforcement for structural materials is motivated by their exceptional mechanical/functional properties and their unique physical/chemical characteristics This review focuses on MMCs and CMCs because of their technological importance for structural applications and the unique challenges associated with developing high-temperature composites with nanoparticle reinforcements The review discusses processing techniques, effects of graphene on the mechanical behaviour of GNP-MMCs and GNP-CMCs, including early studies on the tribological performance of graphene-reinforced composites, where graphene has shown signs of serving as a protective and lubricious phase Additionally, the unique functional properties endowed by graphene to GNP-MMCs and GNP-CMCs, such as enhanced thermal/electrical conductivity, improved oxidation resistance, and excellent bi

456 citations