scispace - formally typeset
Search or ask a question
Author

John K. Iskander

Bio: John K. Iskander is an academic researcher from Centers for Disease Control and Prevention. The author has contributed to research in topics: Vaccination & Public health. The author has an hindex of 35, co-authored 130 publications receiving 6932 citations. Previous affiliations of John K. Iskander include United States Public Health Service.


Papers
More filters
Journal Article
TL;DR: This report updates the 2008 recommendations by CDC's Advisory Committee on Immunization Practices regarding the use of influenza vaccine for the prevention and control of seasonal influenza and includes a summary of safety data for U.S. licensed influenza vaccines.
Abstract: This report updates the 2009 recommendations by CDC's Advisory Committee on Immunization Practices (ACIP) regarding the use of influenza vaccine for the prevention and control of influenza (CDC. Prevention and control of influenza: recommendations of the Advisory Committee on Immunization Practices [ACIP]. MMWR 2009;58[No. RR-8] and CDC. Use of influenza A (H1N1) 2009 monovalent vaccine---recommendations of the Advisory Committee on Immunization Practices [ACIP], 2009. MMWR 2009;58:[No. RR-10]). The 2010 influenza recommendations include new and updated information. Highlights of the 2010 recommendations include 1) a recommendation that annual vaccination be administered to all persons aged >or=6 months for the 2010-11 influenza season; 2) a recommendation that children aged 6 months--8 years whose vaccination status is unknown or who have never received seasonal influenza vaccine before (or who received seasonal vaccine for the first time in 2009-10 but received only 1 dose in their first year of vaccination) as well as children who did not receive at least 1 dose of an influenza A (H1N1) 2009 monovalent vaccine regardless of previous influenza vaccine history should receive 2 doses of a 2010-11 seasonal influenza vaccine (minimum interval: 4 weeks) during the 2010--11 season; 3) a recommendation that vaccines containing the 2010-11 trivalent vaccine virus strains A/California/7/2009 (H1N1)-like (the same strain as was used for 2009 H1N1 monovalent vaccines), A/Perth/16/2009 (H3N2)-like, and B/Brisbane/60/2008-like antigens be used; 4) information about Fluzone High-Dose, a newly approved vaccine for persons aged >or=65 years; and 5) information about other standard-dose newly approved influenza vaccines and previously approved vaccines with expanded age indications. Vaccination efforts should begin as soon as the 2010-11 seasonal influenza vaccine is available and continue through the influenza season. These recommendations also include a summary of safety data for U.S.-licensed influenza vaccines. These recommendations and other information are available at CDC's influenza website (http://www.cdc.gov/flu); any updates or supplements that might be required during the 2010-11 influenza season also will be available at this website. Recommendations for influenza diagnosis and antiviral use will be published before the start of the 2010-11 influenza season. Vaccination and health-care providers should be alert to announcements of recommendation updates and should check the CDC influenza website periodically for additional information.

1,659 citations

Journal Article
TL;DR: Adolescents aged 11-18 years should receive a single dose of Tdap instead of tetanus and diphtheria toxoids vaccine (Td) for booster immunization against tetanus, diphTheria, and pertussis if they have completed the recommended childhood DTP/DTaP vaccination series.
Abstract: During spring 2005, two tetanus toxoid, reduced diphtheria toxoid and acellular pertussis vaccine (Tdap) products formulated for use in adolescents (and, for one product, use in adults) were licensed in the United States (BOOSTRIX, GlaxoSmithKline Biologicals, Rixensart, Belgium [licensed May 3, 2005, for use in persons aged 10-18 years], and ADACEL, sanofi pasteur, Toronto, Ontario, Canada [licensed June 10, 2005, for use in persons aged 11-64 years]). Prelicensure studies demonstrated safety and efficacy against tetanus, diphtheria, and pertussis when Tdap was administered as a single booster dose to adolescents. To reduce pertussis morbidity in adolescents and maintain the standard of care for tetanus and diphtheria protection, the Advisory Committee on Immunization Practices (ACIP) recommends that: 1) adolescents aged 11-18 years should receive a single dose of Tdap instead of tetanus and diphtheria toxoids vaccine (Td) for booster immunization against tetanus, diphtheria, and pertussis if they have completed the recommended childhood diphtheria and tetanus toxoids and whole cell pertussis vaccine (DTP)/ diphtheria and tetanus toxoids and acellular pertussis vaccine (DTaP) vaccination series (five doses of pediatric DTP/DTaP before the seventh birthday; if the fourth dose was administered on or after the fourth birthday, the fifth dose is not needed) and have not received Td or Tdap. The preferred age for Tdap vaccination is 11-12 years; 2) adolescents aged 11-18 years who received Td, but not Tdap, are encouraged to receive a single dose of Tdap to provide protection against pertussis if they have completed the recommended childhood DTP/DTaP vaccination series. An interval of at least 5 years between Td and Tdap is encouraged to reduce the risk for local and systemic reactions after Tdap vaccination. However, an interval less than 5 years between Td and Tdap can be used; and 3) vaccine providers should administer Tdap and tetravalent meningococcal conjugate vaccine (Menactra, sanofi pasteur, Swiftwater, Pennsylvania) to adolescents aged 11-18 years during the same visit if both vaccines are indicated and available. This statement 1) reviews tetanus, diphtheria and pertussis vaccination policy in the United States, with emphasis on adolescents; 2) describes the clinical features and epidemiology of pertussis among adolescents; 3) summarizes the immunogenicity, efficacy, and safety data of the two Tdap vaccines licensed for use among adolescents; and 4) presents recommendations for tetanus, diphtheria, and pertussis vaccination among adolescents aged 11-18 years.

485 citations

Journal ArticleDOI
19 Aug 2009-JAMA
TL;DR: Most of the AEFI rates were not greater than the background rates compared with other vaccines, but there was disproportional reporting of syncope and venous thromboembolic events.
Abstract: Context In June 2006, the Food and Drug Administration licensed the quadrivalent human papillomavirus (types 6, 11, 16, and 18) recombinant vaccine (qHPV) in the United States for use in females aged 9 to 26 years; the Advisory Committee on Immunization Practices then recommended qHPV for routine vaccination of girls aged 11 to 12 years. Objective To summarize reports to the Vaccine Adverse Event Reporting System (VAERS) following receipt of qHPV. Design, Setting, and Participants Review and describe adverse events following immunization (AEFIs) reported to VAERS, a national, voluntary, passive surveillance system, from June 1, 2006, through December 31, 2008. Additional analyses were performed for some AEFIs in prelicensure trials, those of unusual severity, or those that had received public attention. Statistical data mining, including proportional reporting ratios (PRRs) and empirical Bayesian geometric mean methods, were used to detect disproportionality in reporting. Main Outcome Measures Numbers of reported AEFIs, reporting rates (reports per 100 000 doses of distributed vaccine or per person-years at risk), and comparisons with expected background rates. Results VAERS received 12 424 reports of AEFIs following qHPV distribution, a rate of 53.9 reports per 100 000 doses distributed. A total of 772 reports (6.2% of all reports) described serious AEFIs, including 32 reports of death. The reporting rates per 100 000 qHPV doses distributed were 8.2 for syncope; 7.5 for local site reactions; 6.8 for dizziness; 5.0 for nausea; 4.1 for headache; 3.1 for hypersensitivity reactions; 2.6 for urticaria; 0.2 for venous thromboembolic events, autoimmune disorders, and Guillain-Barre syndrome; 0.1 for anaphylaxis and death; 0.04 for transverse myelitis and pancreatitis; and 0.009 for motor neuron disease. Disproportional reporting of syncope and venous thromboembolic events was noted with data mining methods. Conclusions Most of the AEFI rates were not greater than the background rates compared with other vaccines, but there was disproportional reporting of syncope and venous thromboembolic events. The significance of these findings must be tempered with the limitations (possible underreporting) of a passive reporting system.

443 citations

Journal Article
TL;DR: This report summarizes the adverse events reported to the Vaccine Adverse Event Reporting System (VAERS) from January 1, 1991, through December 31, 2001, and indicates that the most commonly reported adverse event was fever, which appeared in 25.8% of all reports.
Abstract: Problem/condition Vaccines are usually administered to healthy persons who have substantial expectations for the safety of the vaccines. Adverse events after vaccinations occur but are generally rare. Some adverse events are unlikely to be detected in prelicensure clinical trials because of their low frequency, the limited numbers of enrolled subjects, and other study limitations. Therefore, postmarketing monitoring of adverse events after vaccinations is essential. The cornerstone of monitoring safety is review and analysis of spontaneously reported adverse events. Reporting period covered This report summarizes the adverse events reported to the Vaccine Adverse Event Reporting System (VAERS) from January 1, 1991, through December 31, 2001. Description of systems VAERS was established in 1990 under the joint administration of CDC and the Food and Drug Administration (FDA) to accept reports of suspected adverse events after administration of any vaccine licensed in the United States. VAERS is a passive surveillance system: reports of events are voluntarily submitted by those who experience them, their caregivers, or others. Passive surveillance systems (e.g., VAERS) are subject to multiple limitations, including underreporting, reporting of temporal associations or unconfirmed diagnoses, and lack of denominator data and unbiased comparison groups. Because of these limitations, determining causal associations between vaccines and adverse events from VAERS reports is usually not possible. Vaccine safety concerns identified through adverse event monitoring nearly always require confirmation using an epidemiologic or other (e.g., laboratory) study. Reports may be submitted by anyone suspecting that an adverse event might have been caused by vaccination and are usually submitted by mail or fax. A web-based electronic reporting system has recently become available. Information from the reports is entered into the VAERS database, and new reports are analyzed weekly. VAERS data stripped of personal identifiers can be reviewed by the public by accessing http://www.vaers.org. The objectives of VAERS are to 1) detect new, unusual, or rare vaccine adverse events; 2) monitor increases in known adverse events; 3) determine patient risk factors for particular types of adverse events; 4) identify vaccine lots with increased numbers or types of reported adverse events; and 5) assess the safety of newly licensed vaccines. Results During 1991-2001, VAERS received 128,717 reports, whereas >1.9 billion net doses of human vaccines were distributed. The overall dose-based reporting rate for the 27 frequently reported vaccine types was 11.4 reports per 100,000 net doses distributed. The proportions of reports in the age groups /= years were 18.1%, 26.7%, 8.0%, 32.6%, and 4.9%, respectively. In all of the adult age groups, a predominance among the number of women reporting was observed, but the difference in sex was minimal among children. Overall, the most commonly reported adverse event was fever, which appeared in 25.8% of all reports, followed by injection-site hypersensitivity (15.8%), rash (unspecified) (11.0%), injection-site edema (10.8%), and vasodilatation (10.8%). A total of 14.2% of all reports described serious adverse events, which by regulatory definition include death, life-threatening illness, hospitalization or prolongation of hospitalization, or permanent disability. Examples of the uses of VAERS data for vaccine safety surveillance are included in this report. Interpretation As a national public health surveillance system, VAERS is a key component in ensuring the safety of vaccines. VAERS data are used by CDC, FDA, and other organizations to monitor and study vaccine safety. CDC and FDA use VAERS data to respond to public inquiries regarding vaccine safety, and both organizations have published and presented vaccine safety studies based on VAERS data. VAERS data are also used by the Advisory Committee on Immunization Practices and the Vaccine and Related Biological Products Advisory Committee to evaluate possible adverse events after vaccinations and to develop recommendations for precautions and contraindications to vaccinations. Reviews of VAERS reports and the studies based on VAERS reports during 1991-2001 have demonstrated that vaccines are usually safe and that serious adverse events occur but are rare. Public health actions Through continued reporting of adverse events after vaccination to VAERS by health-care providers, public health professionals, and the public and monitoring of reported events by the VAERS working group, the public health system will continue to be able to detect rare but potentially serious consequences of vaccination. This knowledge facilitates improvement in the safety of vaccines and the vaccination process.

369 citations

Journal ArticleDOI
TL;DR: The Vaccine Adverse Event Reporting System is useful in detecting adverse events related to vaccines and most recently was used for enhanced reporting of adverse events in the national smallpox immunization campaign.
Abstract: The Vaccine Adverse Event Reporting System (VAERS) is administered by the Food and Drug Administration and CDC and is a key component of postlicensure vaccine safety surveillance. Its primary function is to detect early warning signals and generate hypotheses about possible new vaccine adverse events or changes in frequency of known ones. VAERS is a passive surveillance system that relies on physicians and others to voluntarily submit reports of illness after vaccination. Manufacturers are required to report all adverse events of which they become aware. There are a number of well-described limitations of such reporting systems. These include, for example, variability in report quality, biased reporting, underreporting and the inability to determine whether a vaccine caused the adverse event in any individual report. Strengths of VAERS are that it is national in scope and timely. The information in VAERS reports is not necessarily complete nor is it verified systematically. Reports are classified as serious or nonserious based on regulatory criteria. Reports are coded by VAERS in a uniform way with a limited number of terms using a terminology called COSTART. Coding is useful for search purposes but is necessarily imprecise. VAERS is useful in detecting adverse events related to vaccines and most recently was used for enhanced reporting of adverse events in the national smallpox immunization campaign. VAERS data have always been publicly available. However, it is essential for users of VAERS data to be fully aware of the strengths and weaknesses of the system. VAERS data contain strong biases. Incidence rates and relative risks of specific adverse events cannot be calculated. Statistical significance tests and confidence intervals should be used with great caution and not routinely. Signals detected in VAERS should be subjected to further clinical and descriptive epidemiologic analysis. Confirmation in a controlled study is usually required. An understanding of the system's defined objectives and inherent drawbacks is vital to the effective use of VAERS data in vaccine safety investigations.

356 citations


Cited by
More filters
Journal Article
TL;DR: This report updates the 2000 recommendations by the Advisory Committee on Immunization Practices on the use of influenza vaccine and antiviral agents with new or updated information regarding the cost-effectiveness of influenza vaccination and the 2001-2002 trivalent vaccine virus strains.
Abstract: This report updates the 2002 recommendations by the Advisory Committee on Immunization Practices (ACIP) on the use of influenza vaccine and antiviral agents (CDC. Prevention and Control of Influenza: Recommendations of the Advisory Committee on Immunization Practices [ACIP]. MMWR 2002;51 [No. RR-3]:1-31). The 2003 recommendations include new or updated information regarding 1) the timing of influenza vaccination by age and risk group; 2) influenza vaccine for children aged 6-23 months; 3) the 2003-2004 trivalent inactivated vaccine virus strains: A/Moscow/10/99 (H3N2)-like, A/New Caledonia/20/99 (H1N1)-like, and B/Hong Kong/330/2001-like antigens (for the A/Moscow/10/99 [H3N2]-like antigen, manufacturers will use the antigenically equivalent A/Panama/2007/99 [H3N2] virus, and for the B/Hong Kong/330/2001-like antigen, manufacturers will use either B/Hong Kong/330/2001 or the antigenically equivalent B/Hong Kong/1434/2002); 4) availability of certain influenza vaccine doses with reduced thimerosal content, including single 0.25 mL-dose syringes; and 5) manufacturers of influenza vaccine for the U.S. market. Although the optimal time to vaccinate against influenza is October and November, vaccination in December and later continues to be strongly recommended A link to this report and other information regarding influenza can be accessed at http://www.cdc.gov/ncidod/diseases/flu/fluvirus.htm.

5,334 citations

Journal ArticleDOI
TL;DR: The National Institute of Allergy and Infectious Diseases, working with 34 professional organizations, federal agencies, and patient advocacy groups, led the development of clinical guidelines for the diagnosis and management of food allergy, which include a consensus definition for food allergy.
Abstract: Food allergy is an important public health problem that affects children and adults and may be increasing in prevalence. Despite the risk of severe allergic reactions and even death, there is no current treatment for food allergy: the disease can only be managed by allergen avoidance or treatment of symptoms. The diagnosis and management of food allergy also may vary from one clinical practice setting to another. Finally, because patients frequently confuse nonallergic food reactions, such as food intolerance, with food allergies, there is an unfounded belief among the public that food allergy prevalence is higher than it truly is. In response to these concerns, the National Institute of Allergy and Infectious Diseases, working with 34 professional organizations, federal agencies, and patient advocacy groups, led the development of clinical guidelines for the diagnosis and management of food allergy. These Guidelines are intended for use by a wide variety of health care professionals, including family practice physicians, clinical specialists, and nurse practitioners. The Guidelines include a consensus definition for food allergy, discuss comorbid conditions often associated with food allergy, and focus on both IgE-mediated and non-IgE-mediated reactions to food. Topics addressed include the epidemiology, natural history, diagnosis, and management of food allergy, as well as the management of severe symptoms and anaphylaxis. These Guidelines provide 43 concise clinical recommendations and additional guidance on points of current controversy in patient management. They also identify gaps in the current scientific knowledge to be addressed through future research.

2,014 citations

Journal ArticleDOI
TL;DR: The development of the present guideline involved a process of partial adaptation of other guideline statements and reports and supplemental literature searches, which confirmed that in patients with atherosclerotic vascular disease, comprehensive risk factor management reduces risk as assessed by a variety of outcomes.
Abstract: Since the 2006 update of the American Heart Association (AHA)/American College of Cardiology Foundation (ACCF) guidelines on secondary prevention,1 important evidence from clinical trials has emerged that further supports and broadens the merits of intensive risk-reduction therapies for patients with established coronary and other atherosclerotic vascular disease, including peripheral artery disease, atherosclerotic aortic disease, and carotid artery disease. In reviewing this evidence and its clinical impact, the writing group believed it would be more appropriate to expand the title of this guideline to “Secondary Prevention and Risk Reduction Therapy for Patients With Coronary and Other Atherosclerotic Vascular Disease.” Indeed, the growing body of evidence confirms that in patients with atherosclerotic vascular disease, comprehensive risk factor management reduces risk as assessed by a variety of outcomes, including improved survival, reduced recurrent events, the need for revascularization procedures, and improved quality of life. It is important not only that the healthcare provider implement these recommendations in appropriate patients but also that healthcare systems support this implementation to maximize the benefit to the patient. Compelling evidence-based results from recent clinical trials and revised practice guidelines provide the impetus for this update of the 2006 recommendations with evidence-based results2–165 (Table 1). Classification of recommendations and level of evidence are expressed in ACCF/AHA format, as detailed in Table 2. Recommendations made herein are largely based on major practice guidelines from the National Institutes of Health and updated ACCF/AHA practice guidelines, as well as on results from recent clinical trials. Thus, the development of the present guideline involved a process of partial adaptation of other guideline statements and reports and supplemental literature searches. The recommendations listed in this document are, whenever possible, evidence based. Writing group members performed these relevant supplemental literature searches with key search phrases including but not limited …

1,825 citations

Journal ArticleDOI
TL;DR: Investigators of large, worldwide, collaborative studies of the spectrum of Guillain-Barré syndrome are accruing data for clinical and biological databases to inform the development of outcome predictors and disease biomarkers, which is transforming the clinical and scientific landscape of acute autoimmune neuropathies.

1,795 citations