scispace - formally typeset
Search or ask a question
Author

John Kornblum

Bio: John Kornblum is an academic researcher from New York City Department of Health and Mental Hygiene. The author has contributed to research in topics: Outbreak & RNAIII. The author has an hindex of 26, co-authored 38 publications receiving 4545 citations. Previous affiliations of John Kornblum include Public Health Research Institute.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that the cloned RNAIII determinant restores both positive and negative regulatory functions of agr to an agr‐null strain and that the RNA itself, rather than any protein, is the effector molecule.
Abstract: The production of most toxins and other exoproteins in Staphylococcus aureus is controlled globally by a complex polycistronic regulatory locus, agr. Secretory proteins are up-regulated by agr whereas surface proteins are down-regulated. agr contains two divergent promoters, one of which directs the synthesis of a 514 nucleotide (nt) transcript, RNAIII. In this report, we show that the cloned RNAIII determinant restores both positive and negative regulatory functions of agr to an agr-null strain and that the RNA itself, rather than any protein, is the effector molecule. RNAIII acts primarily on the initiation of transcription and, secondarily in some cases, at the level of translation. In these cases, translation and transcription are regulated independently. RNAIII probably regulates translation directly by interacting with target gene transcripts and transcription indirectly by means of intermediary protein factors.

1,048 citations

Journal ArticleDOI
TL;DR: The cloning of this gene in Escherichia coli by using an inserted transposon (Tn551) as a cloning probe is described, and the cloned gene showed considerable variation with respect to different exoproteins and different host strains compared with the chromosomal agr determinant.
Abstract: We have previously identified a gene in Staphylococcus aureus, agr, whose activity is required for high-level post-exponential-phase expression of a series of secreted proteins. In this paper, we describe the cloning of this gene in Escherichia coli by using an inserted transposon (Tn551) as a cloning probe. The cloned gene, consisting of a 241-codon open reading frame containing the site of the transposon insertion, was recloned to an S. aureus vector, pSK265, and shown to be functional in S. aureus. Activity was evaluated by determinations of alpha-hemolysin, beta-hemolysin, and toxic shock syndrome toxin-1 production in early-stationary-phase cultures. The cloned gene showed considerable variation with respect to different exoproteins and different host strains compared with the chromosomal agr determinant; this variation could not be attributed to the higher copy number of the cloned gene and probably reflects inapparent subtleties of the regulatory system.

572 citations

Journal ArticleDOI
TL;DR: This is the third KPC carbapenem-hydrolyzing β-lactamase variant to have been reported in members of the Enterobacteriaceae, with others reported from the East Coast of the United States.
Abstract: From April 2000 to April 2001, 24 patients in intensive care units at Tisch Hospital, New York, N.Y., were infected or colonized by carbapenem-resistant Klebsiella pneumoniae. Pulsed-field gel electrophoresis identified a predominant outbreak strain, but other resistant strains were also recovered. Three representatives of the outbreak strain from separate patients were studied in detail. All were resistant or had reduced susceptibility to imipenem, meropenem, ceftazidime, piperacillin-tazobactam, and gentamicin but remained fully susceptible to tetracycline. PCR amplified a blaKPC allele encoding a novel variant, KPC-3, with a His(272)-->Tyr substitution not found in KPC-2; other carbapenemase genes were absent. In the outbreak strain, KPC-3 was encoded by a 75-kb plasmid, which was transferred in vitro by electroporation and conjugation. The isolates lacked the OmpK35 porin but expressed OmpK36, implying reduced permeability as a cofactor in resistance. This is the third KPC carbapenem-hydrolyzing beta-lactamase variant to have been reported in members of the Enterobacteriaceae, with others reported from the East Coast of the United States. Although producers of these enzymes remain rare, the progress of this enzyme group merits monitoring.

455 citations

Journal ArticleDOI
08 Jan 1993-Science
TL;DR: An investigation of the clonality of 472 isolates by DNA hybridization was performed, suggesting that mecA divergence preceded the acquisition of Tn554 in all cases and therefore thatmecA may have been acquired just once by S. aureus.
Abstract: Soon after methicillin was introduced into clinical practice in the early 1960s, resistant strains of Staphylococcus aureus (MRSA) appeared, bearing a newly acquired resistance gene, mecA, that encodes a penicillin binding protein, PBP2a. MRSA have spread throughout the world, and an investigation of the clonality of 472 isolates by DNA hybridization was performed. All 472 isolates could be divided into six temporally ordered mecA hybridization patterns, and three of these were subdivided by the chromomosomal transposon Tn554. Each Tn554 pattern occurred in association with one and only one mecA pattern, suggesting that mecA divergence preceded the acquisition of Tn554 in all cases and therefore that mecA may have been acquired just once by S. aureus.

436 citations

Journal ArticleDOI
TL;DR: The P2 operon is autocatalytic, and is thus admirably suited to the need for rapid production of exo-proteins at a time when overall growth is coming to a halt.
Abstract: The synthesis of virulence factors and other exoproteins inStaphylococcus aureus is controlled by the global regulator,agr. Expression of secreted proteins is up-regulated in the postexponential growth phase, whereas expression of surface proteins is down-regulated byagr. Theagr locus consists of two divergent operons, transcribed from neighboring but non-overlapping promoters, P2 and P3. The P2 operon sequence, reported here, contains 4 open reading frames,agr A, C, D, andB, of whichA andC appear to encode proteins of a classical 2-component signal transduction pathway. The P3 operon specifies a 0.5 kb transcript, RNA III, which is the actual effector of theagr response, and, incidentally, encodes theagr-regulated peptide δ-hemolysin. Transcriptional fusions have shown that both P2 and P3 areagr sensitive (function in anagr+ but not in anagr background) and deletion analysis has shown that all four of the P2 ORFs are involved;agrA andagrC seem to be absolutely required for the transcriptional activation of theagr locus, whereasagrB andagrD seem to be partially required. Since transcription of P2 requires P2 operon products, the P2 operon is autocatalytic, and is thus admirably suited to the need for rapid production of exo-proteins at a time when overall growth is coming to a halt.

394 citations


Cited by
More filters
01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
TL;DR: This research presents a novel, scalable and scalable approach that allows for real-time assessment of the severity of the infection and its impact on patients’ health.
Abstract: FRED C. TENOVER,* ROBERT D. ARBEIT, RICHARD V. GOERING, PATRICIA A. MICKELSEN, BARBARA E. MURRAY, DAVID H. PERSING, AND BALA SWAMINATHAN National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333; Veterans Affairs Medical Center, Boston, Massachusetts 02130; Creighton University, Omaha, Nebraska 68178; Stanford University Medical Center, Stanford, California 94305; University of Texas Medical School, Houston, Texas 77030; and Mayo Clinic, Rochester, Minnesota 55905

7,784 citations

Journal ArticleDOI
TL;DR: In an elegant series of clinical observations and laboratory studies published in 1880 and 1882, Ogston described staphylococcal disease and its role in sepsis and abscess formation.
Abstract: Micrococcus, which, when limited in its extent and activity, causes acute suppurative inflammation (phlegmon), produces, when more extensive and intense in its action on the human system, the most virulent forms of septicaemia and pyaemia.1 In an elegant series of clinical observations and laboratory studies published in 1880 and 1882, Ogston described staphylococcal disease and its role in sepsis and abscess formation.1,2 More than 100 years later, Staphylococcus aureus remains a versatile and dangerous pathogen in humans. The frequencies of both community-acquired and hospital-acquired staphylococcal infections have increased steadily, with little change in overall mortality. Treatment of these infections . . .

5,550 citations

Journal ArticleDOI
TL;DR: The evolution of quorum sensing systems in bacteria could, therefore, have been one of the early steps in the development of multicellularity.
Abstract: ▪ Abstract Quorum sensing is the regulation of gene expression in response to fluctuations in cell-population density. Quorum sensing bacteria produce and release chemical signal molecules called autoinducers that increase in concentration as a function of cell density. The detection of a minimal threshold stimulatory concentration of an autoinducer leads to an alteration in gene expression. Gram-positive and Gram-negative bacteria use quorum sensing communication circuits to regulate a diverse array of physiological activities. These processes include symbiosis, virulence, competence, conjugation, antibiotic production, motility, sporulation, and biofilm formation. In general, Gram-negative bacteria use acylated homoserine lactones as autoinducers, and Gram-positive bacteria use processed oligo-peptides to communicate. Recent advances in the field indicate that cell-cell communication via autoinducers occurs both within and between bacterial species. Furthermore, there is mounting data suggesting that ba...

4,449 citations

Journal ArticleDOI
TL;DR: This review focuses on the architectures of bacterial chemical communication networks; how chemical information is integrated, processed, and transduced to control gene expression; how intra- and interspecies cell-cell communication is accomplished; and the intriguing possibility of prokaryote-eukaryote cross-communication.
Abstract: Bacteria communicate with one another using chemical signal molecules. As in higher organisms, the information supplied by these molecules is critical for synchronizing the activities of large groups of cells. In bacteria, chemical communication involves producing, releasing, detecting, and responding to small hormone-like molecules termed autoinducers. This process, termed quorum sensing, allows bacteria to monitor the environment for other bacteria and to alter behavior on a population-wide scale in response to changes in the number and/or species present in a community. Most quorum-sensing-controlled processes are unproductive when undertaken by an individual bacterium acting alone but become beneficial when carried out simultaneously by a large number of cells. Thus, quorum sensing confuses the distinction between prokaryotes and eukaryotes because it enables bacteria to act as multicellular organisms. This review focuses on the architectures of bacterial chemical communication networks; how c...

3,360 citations