scispace - formally typeset
Search or ask a question
Author

John L. Harwood

Bio: John L. Harwood is an academic researcher from Cardiff University. The author has contributed to research in topics: Lipid metabolism & Fatty acid. The author has an hindex of 60, co-authored 420 publications receiving 16081 citations. Previous affiliations of John L. Harwood include John L. Scott & Spanish National Research Council.


Papers
More filters
Journal ArticleDOI
TL;DR: A series of analogues of the naturally occurring antibiotic thiolactomycin have been synthesised and evaluated for their ability to inhibit the growth of the malaria parasite, Plasmodium falciparum.

74 citations

Book ChapterDOI
01 Jan 1998
TL;DR: This chapter presents a comprehensive discussion of stresses which have been noted to affect Chloroplast lipids or their metabolism.
Abstract: This chapter presents a comprehensive discussion of stresses which have been noted to affect Chloroplast lipids or their metabolism. Where adaptation to the stress is possible, it is usually not clear if the alterations in lipid biochemistry are part of the adaptive response.

71 citations

Journal ArticleDOI
TL;DR: Although trichloroacetic acid had no effect on synthesis of fatty acids by either seed, other compounds such as decenylsuccinic acid and carbamate weed killers specifically reduce the formation of the very long chain fatty acidsby pea thus suggesting a mode of action for these compounds in wax formation.

71 citations

Journal ArticleDOI
TL;DR: In vitro model systems showed that n-3 PUFAs reduce expression of cartilage-degrading proteinases, cyclooxygenase-2 and inflammatory cytokines, and Eicosapentaenoic acid (EPA) was more effective than docosahexaenoic Acid (DHA) or alpha-linolenic acid.
Abstract: Musculoskeletal complaints are the second most frequent reason for medical treatments. Within these diseases rheumatoid arthritis (RA) and, especially, osteoarthritis (OA) are common. Although the causes of arthritis are multifactorial and not fully understood, clinical trials have generally shown benefit from dietary n-3 polyunsaturated fatty acids. This has usually been attributed to their anti-inflammatory properties. Recently we have used in vitro model systems to study the molecular mechanism(s) by which n-3 PUFAs may act to alleviate the symptoms of arthritis. These experiments showed that n-3 PUFAs reduce expression of cartilage-degrading proteinases, cyclooxygenase-2 and inflammatory cytokines. Eicosapentaenoic acid (EPA) was more effective than docosahexaenoic acid (DHA) or alpha-linolenic acid. The data provide a scientific rationale for the consumption of n-3 fatty acids as part of a healthy diet and perhaps in treating arthritis.

70 citations

Journal ArticleDOI
01 Nov 1982-Planta
TL;DR: The hypothesis that the slower senescence changes of the Bf 993 mutant may be due, in part, to an altered membrane lipid composition is supported.
Abstract: The lipid compositions of leaves from Festuca pratensis cv. Rossa (yellowing) were compared with those from a non-yellowing mutant, Bf 993. The leaves of Bf 993 contained a higher level of acyl lipids on both a fresh-weight and a dry-weight basis. Diacylgalactosylglycerol, diacylgalabiosylglycerol and phosphatidylinositol were relatively enriched in the Bf 993 mutant while phosphatidylcholine was relatively reduced. There were no differences in the fatty-acid compositions of individual lipids between the two varieties. During senescence, the lipids of cv. Rossa were progressively degraded over an 8-d period. In contrast little lipid degradation was observed in the Bf 993 mutant during the first 4 d. The results support the hypothesis that the slower senescence changes of the Bf 993 mutant may be due, in part, to an altered membrane lipid composition.

69 citations


Cited by
More filters
Journal ArticleDOI
Yusuf Chisti1
TL;DR: As demonstrated here, microalgae appear to be the only source of renewable biodiesel that is capable of meeting the global demand for transport fuels.

9,030 citations

Journal ArticleDOI
TL;DR: In this article, the transesterification reaction is aected by molar ratio of glycerides to alcohol, catalysts, reaction temperature, reaction time and free fatty acids and water content of oils or fats.

4,902 citations

Journal ArticleDOI
TL;DR: The current understanding of IFN‐γ ligand, receptor, ignal transduction, and cellular effects with a focus on macrophage responses and to a lesser extent, responses from other cell types that influence macrophages function during infection are reviewed.
Abstract: Interferon-gamma (IFN-gamma) coordinates a diverse array of cellular programs through transcriptional regulation of immunologically relevant genes. This article reviews the current understanding of IFN-gamma ligand, receptor, signal transduction, and cellular effects with a focus on macrophage responses and to a lesser extent, responses from other cell types that influence macrophage function during infection. The current model for IFN-gamma signal transduction is discussed, as well as signal regulation and factors conferring signal specificity. Cellular effects of IFN-gamma are described, including up-regulation of pathogen recognition, antigen processing and presentation, the antiviral state, inhibition of cellular proliferation and effects on apoptosis, activation of microbicidal effector functions, immunomodulation, and leukocyte trafficking. In addition, integration of signaling and response with other cytokines and pathogen-associated molecular patterns, such as tumor necrosis factor-alpha, interleukin-4, type I IFNs, and lipopolysaccharide are discussed.

3,589 citations

Journal ArticleDOI
TL;DR: A brief summary of the current knowledge on oleaginous algae and their fatty acid and TAG biosynthesis, algal model systems and genomic approaches to a better understanding of TAG production, and a historical perspective and path forward for microalgae-based biofuel research and commercialization are provided.
Abstract: Microalgae represent an exceptionally diverse but highly specialized group of micro-organisms adapted to various ecological habitats. Many microalgae have the ability to produce substantial amounts (e.g. 20-50% dry cell weight) of triacylglycerols (TAG) as a storage lipid under photo-oxidative stress or other adverse environmental conditions. Fatty acids, the building blocks for TAGs and all other cellular lipids, are synthesized in the chloroplast using a single set of enzymes, of which acetyl CoA carboxylase (ACCase) is key in regulating fatty acid synthesis rates. However, the expression of genes involved in fatty acid synthesis is poorly understood in microalgae. Synthesis and sequestration of TAG into cytosolic lipid bodies appear to be a protective mechanism by which algal cells cope with stress conditions, but little is known about regulation of TAG formation at the molecular and cellular level. While the concept of using microalgae as an alternative and renewable source of lipid-rich biomass feedstock for biofuels has been explored over the past few decades, a scalable, commercially viable system has yet to emerge. Today, the production of algal oil is primarily confined to high-value specialty oils with nutritional value, rather than commodity oils for biofuel. This review provides a brief summary of the current knowledge on oleaginous algae and their fatty acid and TAG biosynthesis, algal model systems and genomic approaches to a better understanding of TAG production, and a historical perspective and path forward for microalgae-based biofuel research and commercialization.

3,479 citations