scispace - formally typeset
Search or ask a question
Author

John L. Hopper

Bio: John L. Hopper is an academic researcher from University of Melbourne. The author has contributed to research in topics: Breast cancer & Population. The author has an hindex of 140, co-authored 1229 publications receiving 86392 citations. Previous affiliations of John L. Hopper include Vanderbilt University & Helmholtz Zentrum München.


Papers
More filters
Journal ArticleDOI
TL;DR: Risks in carriers were higher when based on index breast cancer cases diagnosed at <35 years of age and for variation in risk by mutation position for both genes, and some evidence for a reduction in risk in women from earlier birth cohorts is found.
Abstract: Germline mutations in BRCA1 and BRCA2 confer high risks of breast and ovarian cancer, but the average magnitude of these risks is uncertain and may depend on the context. Estimates based on multiple-case families may be enriched for mutations of higher risk and/or other familial risk factors, whereas risk estimates from studies based on cases unselected for family history have been imprecise. We pooled pedigree data from 22 studies involving 8,139 index case patients unselected for family history with female (86%) or male (2%) breast cancer or epithelial ovarian cancer (12%), 500 of whom had been found to carry a germline mutation in BRCA1 or BRCA2. Breast and ovarian cancer incidence rates for mutation carriers were estimated using a modified segregation analysis, based on the occurrence of these cancers in the relatives of mutation-carrying index case patients. The average cumulative risks in BRCA1-mutation carriers by age 70 years were 65% (95% confidence interval 44%-78%) for breast cancer and 39% (18%-54%) for ovarian cancer. The corresponding estimates for BRCA2 were 45% (31%-56%) and 11% (2.4%-19%). Relative risks of breast cancer declined significantly with age for BRCA1-mutation carriers (P trend.0012) but not for BRCA2-mutation carriers. Risks in carriers were higher when based on index breast cancer cases diagnosed at <35 years of age. We found some evidence for a reduction in risk in women from earlier birth cohorts and for variation in risk by mutation position for both genes. The pattern of cancer risks was similar to those found in multiple-case families, but their absolute magnitudes were lower, particularly for BRCA2. The variation in risk by age at diagnosis of index case is consistent with the effects of other genes modifying cancer risk in carriers.

3,384 citations

Journal ArticleDOI
Douglas F. Easton1, Karen A. Pooley1, Alison M. Dunning1, Paul D.P. Pharoah1, Deborah J. Thompson1, Dennis G. Ballinger, Jeffery P. Struewing2, Jonathan J. Morrison1, Helen I. Field1, Robert Luben1, Nicholas J. Wareham1, Shahana Ahmed1, Catherine S. Healey1, Richard Bowman, Kerstin B. Meyer1, Christopher A. Haiman3, Laurence K. Kolonel, Brian E. Henderson3, Loic Le Marchand, Paul Brennan4, Suleeporn Sangrajrang, Valerie Gaborieau4, Fabrice Odefrey4, Chen-Yang Shen5, Pei-Ei Wu5, Hui-Chun Wang5, Diana Eccles6, D. Gareth Evans7, Julian Peto8, Olivia Fletcher9, Nichola Johnson9, Sheila Seal, Michael R. Stratton10, Nazneen Rahman, Georgia Chenevix-Trench11, Georgia Chenevix-Trench12, Stig E. Bojesen13, Børge G. Nordestgaard13, C K Axelsson13, Montserrat Garcia-Closas2, Louise A. Brinton2, Stephen J. Chanock2, Jolanta Lissowska14, Beata Peplonska15, Heli Nevanlinna16, Rainer Fagerholm16, H Eerola16, Daehee Kang17, Keun-Young Yoo17, Dong-Young Noh17, Sei Hyun Ahn18, David J. Hunter19, Susan E. Hankinson19, David G. Cox19, Per Hall20, Sara Wedrén20, Jianjun Liu21, Yen-Ling Low21, Natalia Bogdanova22, Peter Schu¨rmann22, Do¨rk Do¨rk22, Rob A. E. M. Tollenaar23, Catharina E. Jacobi23, Peter Devilee23, Jan G. M. Klijn24, Alice J. Sigurdson2, Michele M. Doody2, Bruce H. Alexander25, Jinghui Zhang2, Angela Cox26, Ian W. Brock26, Gordon MacPherson26, Malcolm W.R. Reed26, Fergus J. Couch27, Ellen L. Goode27, Janet E. Olson27, Hanne Meijers-Heijboer24, Hanne Meijers-Heijboer28, Ans M.W. van den Ouweland24, André G. Uitterlinden24, Fernando Rivadeneira24, Roger L. Milne29, Gloria Ribas29, Anna González-Neira29, Javier Benitez29, John L. Hopper30, Margaret R. E. McCredie31, Margaret R. E. McCredie32, Margaret R. E. McCredie11, Melissa C. Southey30, Melissa C. Southey11, Graham G. Giles33, Chris Schroen30, Christina Justenhoven34, Christina Justenhoven35, Hiltrud Brauch34, Hiltrud Brauch35, Ute Hamann36, Yon-Dschun Ko, Amanda B. Spurdle12, Jonathan Beesley12, Xiaoqing Chen12, _ kConFab37, Arto Mannermaa37, Veli-Matti Kosma37, Vesa Kataja37, Jaana M. Hartikainen37, Nicholas E. Day1, David Cox, Bruce A.J. Ponder1 
28 Jun 2007-Nature
TL;DR: To identify further susceptibility alleles, a two-stage genome-wide association study in 4,398 breast cancer cases and 4,316 controls was conducted, followed by a third stage in which 30 single nucleotide polymorphisms were tested for confirmation.
Abstract: Breast cancer exhibits familial aggregation, consistent with variation in genetic susceptibility to the disease. Known susceptibility genes account for less than 25% of the familial risk of breast cancer, and the residual genetic variance is likely to be due to variants conferring more moderate risks. To identify further susceptibility alleles, we conducted a two-stage genome-wide association study in 4,398 breast cancer cases and 4,316 controls, followed by a third stage in which 30 single nucleotide polymorphisms (SNPs) were tested for confirmation in 21,860 cases and 22,578 controls from 22 studies. We used 227,876 SNPs that were estimated to correlate with 77% of known common SNPs in Europeans at r2.0.5. SNPs in five novel independent loci exhibited strong and consistent evidence of association with breast cancer (P,1027). Four of these contain plausible causative genes (FGFR2, TNRC9, MAP3K1 and LSP1). At the second stage, 1,792 SNPs were significant at the P,0.05 level compared with an estimated 1,343 that would be expected by chance, indicating that many additional common susceptibility alleles may be identifiable by this approach.

2,288 citations

Journal ArticleDOI
20 Jun 2017-JAMA
TL;DR: To estimate age-specific risks of breast, ovarian, and contralateral breast cancer for mutation carriers and to evaluate risk modification by family cancer history and mutation location, a large cohort study recruited in 1997-2011 provides estimates of cancer risk based on BRCA1 and BRCa2 mutation carrier status.
Abstract: Importance: The clinical management of BRCA1 and BRCA2 mutation carriers requires accurate, prospective cancer risk estimates. Objectives: To estimate age-specific risks of breast, ovarian, and contralateral breast cancer for mutation carriers and to evaluate risk modification by family cancer history and mutation location. Design, Setting, and Participants: Prospective cohort study of 6036 BRCA1 and 3820 BRCA2 female carriers (5046 unaffected and 4810 with breast or ovarian cancer or both at baseline) recruited in 1997-2011 through the International BRCA1/2 Carrier Cohort Study, the Breast Cancer Family Registry and the Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer, with ascertainment through family clinics (94%) and population-based studies (6%). The majority were from large national studies in the United Kingdom (EMBRACE), the Netherlands (HEBON), and France (GENEPSO). Follow-up ended December 2013; median follow-up was 5 years. Exposures: BRCA1/2 mutations, family cancer history, and mutation location. Main Outcomes and Measures: Annual incidences, standardized incidence ratios, and cumulative risks of breast, ovarian, and contralateral breast cancer. Results: Among 3886 women (median age, 38 years; interquartile range [IQR], 30-46 years) eligible for the breast cancer analysis, 5066 women (median age, 38 years; IQR, 31-47 years) eligible for the ovarian cancer analysis, and 2213 women (median age, 47 years; IQR, 40-55 years) eligible for the contralateral breast cancer analysis, 426 were diagnosed with breast cancer, 109 with ovarian cancer, and 245 with contralateral breast cancer during follow-up. The cumulative breast cancer risk to age 80 years was 72% (95% CI, 65%-79%) for BRCA1 and 69% (95% CI, 61%-77%) for BRCA2 carriers. Breast cancer incidences increased rapidly in early adulthood until ages 30 to 40 years for BRCA1 and until ages 40 to 50 years for BRCA2 carriers, then remained at a similar, constant incidence (20-30 per 1000 person-years) until age 80 years. The cumulative ovarian cancer risk to age 80 years was 44% (95% CI, 36%-53%) for BRCA1 and 17% (95% CI, 11%-25%) for BRCA2 carriers. For contralateral breast cancer, the cumulative risk 20 years after breast cancer diagnosis was 40% (95% CI, 35%-45%) for BRCA1 and 26% (95% CI, 20%-33%) for BRCA2 carriers (hazard ratio [HR] for comparing BRCA2 vs BRCA1, 0.62; 95% CI, 0.47-0.82; P=.001 for difference). Breast cancer risk increased with increasing number of first- and second-degree relatives diagnosed as having breast cancer for both BRCA1 (HR for ≥2 vs 0 affected relatives, 1.99; 95% CI, 1.41-2.82; P<.001 for trend) and BRCA2 carriers (HR, 1.91; 95% CI, 1.08-3.37; P=.02 for trend). Breast cancer risk was higher if mutations were located outside vs within the regions bounded by positions c.2282-c.4071 in BRCA1 (HR, 1.46; 95% CI, 1.11-1.93; P=.007) and c.2831-c.6401 in BRCA2 (HR, 1.93; 95% CI, 1.36-2.74; P<.001). Conclusions and Relevance: These findings provide estimates of cancer risk based on BRCA1 and BRCA2 mutation carrier status using prospective data collection and demonstrate the potential importance of family history and mutation location in risk assessment.

1,733 citations

Journal ArticleDOI
TL;DR: The lesser genetic contribution to proximal femur and distal forearm bone mass compared with the spine suggests that environmental factors are of greater importance in the aetiology of osteopenia of the hip and wrist.
Abstract: The relative importance of genetic factors in determining bone mass in different parts of the skeleton is poorly understood. Lumbar spine and proximal femur bone mineral density and forearm bone mineral content were measured by photon absorptiometry in 38 monozygotic and 27 dizygotic twin pairs. Bone mineral density was significantly more highly correlated in monozygotic than in dizygotic twins for the spine and proximal femur and in the forearm of premenopausal twin pairs, which is consistent with significant genetic contributions to bone mass at all these sites. The lesser genetic contribution to proximal femur and distal forearm bone mass compared with the spine suggests that environmental factors are of greater importance in the aetiology of osteopenia of the hip and wrist. This is the first demonstration of a genetic contribution to bone mass of the spine and proximal femur in adults and confirms similar findings of the forearm. Furthermore, bivariate analysis suggested that a single gene or set of genes determines bone mass at all sites.

1,270 citations

Journal ArticleDOI
TL;DR: LDpred is introduced, a method that infers the posterior mean effect size of each marker by using a prior on effect sizes and LD information from an external reference panel, and outperforms the approach of pruning followed by thresholding, particularly at large sample sizes.
Abstract: Polygenic risk scores have shown great promise in predicting complex disease risk and will become more accurate as training sample sizes increase. The standard approach for calculating risk scores involves linkage disequilibrium (LD)-based marker pruning and applying a p value threshold to association statistics, but this discards information and can reduce predictive accuracy. We introduce LDpred, a method that infers the posterior mean effect size of each marker by using a prior on effect sizes and LD information from an external reference panel. Theory and simulations show that LDpred outperforms the approach of pruning followed by thresholding, particularly at large sample sizes. Accordingly, predicted R(2) increased from 20.1% to 25.3% in a large schizophrenia dataset and from 9.8% to 12.0% in a large multiple sclerosis dataset. A similar relative improvement in accuracy was observed for three additional large disease datasets and for non-European schizophrenia samples. The advantage of LDpred over existing methods will grow as sample sizes increase.

1,088 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: 2007 Guidelines for the Management of Arterial Hypertension : The Task Force for the management of Arterspertension of the European Society ofhypertension (ESH) and of theEuropean Society of Cardiology (ESC).
Abstract: 2007 Guidelines for the Management of Arterial Hypertension : The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC).

9,932 citations

Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
08 Oct 2009-Nature
TL;DR: This paper examined potential sources of missing heritability and proposed research strategies, including and extending beyond current genome-wide association approaches, to illuminate the genetics of complex diseases and enhance its potential to enable effective disease prevention or treatment.
Abstract: Genome-wide association studies have identified hundreds of genetic variants associated with complex human diseases and traits, and have provided valuable insights into their genetic architecture. Most variants identified so far confer relatively small increments in risk, and explain only a small proportion of familial clustering, leading many to question how the remaining, 'missing' heritability can be explained. Here we examine potential sources of missing heritability and propose research strategies, including and extending beyond current genome-wide association approaches, to illuminate the genetics of complex diseases and enhance its potential to enable effective disease prevention or treatment.

7,797 citations

Journal ArticleDOI
TL;DR: 2007 Guidelines for the Management of Arterial Hypertension : The Task Force for the management of Arterspertension of the European Society ofhypertension (ESH) and of theEuropean Society of Cardiology (ESC).
Abstract: Because of new evidence on several diagnostic and therapeutic aspects of hypertension, the present guidelines differ in many respects from the previous ones. Some of the most important differences are listed below: 1. Epidemiological data on hypertension and BP control in Europe. 2. Strengthening of the prognostic value of home blood pressure monitoring (HBPM) and of its role for diagnosis and management of hypertension, next to ambulatory blood pressure monitoring (ABPM). 3. Update of the prognostic significance of night-time BP, white-coat hypertension and masked hypertension. 4. Re-emphasis on integration of BP, cardiovascular (CV) risk factors, asymptomatic organ damage (OD) and clinical complications for total CV risk assessment. 5. Update of the prognostic significance of asymptomatic OD, including heart, blood vessels, kidney, eye and brain. 6. Reconsideration of the risk of overweight and target body mass index (BMI) in hypertension. 7. Hypertension in young people. 8. Initiation of antihypertensive treatment. More evidence-based criteria and no drug treatment of high normal BP. 9. Target BP for treatment. More evidence-based criteria and unified target systolic blood pressure (SBP) (<140 mmHg) in both higher and lower CV risk patients. 10. Liberal approach to initial monotherapy, without any all-ranking purpose. 11. Revised schema for priorital two-drug combinations. 12. New therapeutic algorithms for achieving target BP. 13. Extended section on therapeutic strategies in special conditions. 14. Revised recommendations on treatment of hypertension in the elderly. 15. Drug treatment of octogenarians. 16. Special attention to resistant hypertension and new treatment approaches. 17. Increased attention to OD-guided therapy. 18. New approaches to chronic management of hypertensive disease

7,018 citations

Book ChapterDOI
01 Jan 2010

5,842 citations