scispace - formally typeset
Search or ask a question
Author

John Lighton Synge

Bio: John Lighton Synge is an academic researcher from Dublin Institute for Advanced Studies. The author has contributed to research in topics: Theory of relativity & General relativity. The author has an hindex of 24, co-authored 77 publications receiving 7220 citations. Previous affiliations of John Lighton Synge include Trinity College, Dublin & University of Toronto.


Papers
More filters

Cited by
More filters
Book ChapterDOI
01 Jan 1960

3,018 citations

Journal ArticleDOI
TL;DR: Extended Theories of Gravity as discussed by the authors can be considered as a new paradigm to cure shortcomings of General Relativity at infrared and ultraviolet scales, which is an approach that, by preserving the undoubtedly positive results of Einstein's theory, is aimed to address conceptual and experimental problems recently emerged in astrophysics, cosmology and High Energy Physics.

2,776 citations

Journal ArticleDOI
TL;DR: Risks of extinction for European plants may be large, even in moderate scenarios of climate change and despite inter-model variability, according to application of International Union for Conservation of Nature and Natural Resources Red List criteria.
Abstract: Climate change has already triggered species distribution shifts in many parts of the world. Increasing impacts are expected for the future, yet few studies have aimed for a general understanding of the regional basis for species vulnerability. We projected late 21st century distributions for 1,350 European plants species under seven climate change scenarios. Application of the International Union for Conservation of Nature and Natural Resources Red List criteria to our projections shows that many European plant species could become severely threatened. More than half of the species we studied could be vulnerable or threatened by 2080. Expected species loss and turnover per pixel proved to be highly variable across scenarios (27-42% and 45-63% respectively, averaged over Europe) and across regions (2.5-86% and 17-86%, averaged over scenarios). Modeled species loss and turnover were found to depend strongly on the degree of change in just two climate variables describing temperature and moisture conditions. Despite the coarse scale of the analysis, species from mountains could be seen to be disproportionably sensitive to climate change (approximate to 60% species loss). The boreal region was projected to lose few species, although gaining many others from immigration. The greatest changes are expected in the transition between the Mediterranean and Euro-Siberian regions. We found that risks of extinction for European plants may be large, even in moderate scenarios of climate change and despite inter-model variability.

2,220 citations