scispace - formally typeset
Search or ask a question
Author

John M. Beggs

Bio: John M. Beggs is an academic researcher from Indiana University. The author has contributed to research in topics: Information processing & Hebbian theory. The author has an hindex of 28, co-authored 74 publications receiving 6058 citations. Previous affiliations of John M. Beggs include Virginia Bioinformatics Institute & National Institutes of Health.


Papers
More filters
Journal ArticleDOI
TL;DR: This work shows that propagation of spontaneous activity in cortical networks is described by equations that govern avalanches, and suggests that “neuronal avalanches” may be a generic property of cortical networks, and represent a mode of activity that differs profoundly from oscillatory, synchronized, or wave-like network states.
Abstract: Networks of living neurons exhibit diverse patterns of activity, including oscillations, synchrony, and waves. Recent work in physics has shown yet another mode of activity in systems composed of many nonlinear units interacting locally. For example, avalanches, earthquakes, and forest fires all propagate in systems organized into a critical state in which event sizes show no characteristic scale and are described by power laws. We hypothesized that a similar mode of activity with complex emergent properties could exist in networks of cortical neurons. We investigated this issue in mature organotypic cultures and acute slices of rat cortex by recording spontaneous local field potentials continuously using a 60 channel multielectrode array. Here, we show that propagation of spontaneous activity in cortical networks is described by equations that govern avalanches. As predicted by theory for a critical branching process, the propagation obeys a power law with an exponent of -3/2 for event sizes, with a branching parameter close to the critical value of 1. Simulations show that a branching parameter at this value optimizes information transmission in feedforward networks, while preventing runaway network excitation. Our findings suggest that “neuronal avalanches” may be a generic property of cortical networks, and represent a mode of activity that differs profoundly from oscillatory, synchronized, or wave-like network states. In the critical state, the network may satisfy the competing demands of information transmission and network stability.

2,035 citations

Journal ArticleDOI
TL;DR: The long-term stability, diversity, and temporal precision of these avalanches indicate that they fulfill many of the requirements expected of a substrate for memory and suggest that they play a central role in both information transmission and storage within cortical networks.
Abstract: A major goal of neuroscience is to elucidate mechanisms of cortical information processing and storage. Previous work from our laboratory (Beggs and Plenz, 2003) revealed that propagation of local field potentials (LFPs) in cortical circuits could be described by the same equations that govern avalanches. Whereas modeling studies suggested that these “neuronal avalanches” were optimal for information transmission, it was not clear what role they could play in information storage. Work from numerous other laboratories has shown that cortical structures can generate reproducible spatiotemporal patterns of activity that could be used as a substrate for memory. Here, we show that although neuronal avalanches lasted only a few milliseconds, their spatiotemporal patterns were also stable and significantly repeatable even many hours later. To investigate these issues, we cultured coronal slices of rat cortex for 4 weeks on 60-channel microelectrode arrays and recorded spontaneous extracellular LFPs continuously for 10 hr. Using correlation-based clustering and a global contrast function, we found that each cortical culture spontaneously produced 4736 ± 2769 (mean ± SD) neuronal avalanches per hour that clustered into 30 ± 14 statistically significant families of spatiotemporal patterns. In 10 hr of recording, over 98% of the mutual information shared by these avalanche patterns were retained. Additionally, jittering analysis revealed that the correlations between avalanches were temporally precise to within ±4 msec. The long-term stability, diversity, and temporal precision of these avalanches indicate that they fulfill many of the requirements expected of a substrate for memory and suggest that they play a central role in both information transmission and storage within cortical networks.

600 citations

Journal ArticleDOI
TL;DR: The concept of criticality is explained and substantial objections to the criticality hypothesis raised by skeptics are reviewed, and counter points are presented in dialog form.
Abstract: Relatively recent work has reported that networks of neurons can produce avalanches of activity whose sizes follow a power law distribution. This suggests that these networks may be operating near a critical point, poised between a phase where activity rapidly dies out and a phase where activity is amplified over time. The hypothesis that the electrical activity of neural networks in the brain is critical is potentially important, as many simulations suggest that information processing functions would be optimized at the critical point. This hypothesis, however, is still controversial. Here we will explain the concept of criticality and review the substantial objections to the criticality hypothesis raised by skeptics. Points and counter points are presented in dialog form.

463 citations

Journal ArticleDOI
TL;DR: When the branching parameter is tuned to the critical point, it is found that metastable states are most numerous and that network dynamics are not attracting, but neutral.
Abstract: Recent experimental work has shown that activity in living neural networks can propagate as a critical branching process that revisits many metastable states. Neural network theory suggests that attracting states could store information, but little is known about how a branching process could form such states. Here we use a branching process to model actual data and to explore metastable states in the network. When we tune the branching parameter to the critical point, we find that metastable states are most numerous and that network dynamics are not attracting, but neutral.

439 citations

Journal ArticleDOI
John M. Beggs1
TL;DR: In this paper, the authors review recent experiments on networks of cortical neurons, showing that they appear to be operating near the critical point in a phase transition between total randomness and boring order, and suggest that criticality may allow cortical networks to optimize information processing.
Abstract: Early theoretical and simulation work independently undertaken by Packard, Langton and Kauffman suggested that adaptability and computational power would be optimized in systems at the ‘edge of chaos’, at a critical point in a phase transition between total randomness and boring order. This provocative hypothesis has received much attention, but biological experiments supporting it have been relatively few. Here, we review recent experiments on networks of cortical neurons, showing that they appear to be operating near the critical point. Simulation studies capture the main features of these data and suggest that criticality may allow cortical networks to optimize information processing. These simulations lead to predictions that could be tested in the near future, possibly providing further experimental evidence for the criticality hypothesis.

427 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

01 Jan 2010
TL;DR: In this paper, the authors describe a scenario where a group of people are attempting to find a solution to the problem of "finding the needle in a haystack" in the environment.
Abstract: 中枢神経系疾患の治療は正常細胞(ニューロン)の機能維持を目的とするが,脳血管障害のように機能障害の原因が細胞の死滅に基づくことは多い.一方,脳腫瘍の治療においては薬物療法や放射線療法といった腫瘍細胞の死滅を目標とするものが大きな位置を占める.いずれの場合にも,細胞死の機序を理解することは各種病態や治療法の理解のうえで重要である.現在のところ最も研究の進んでいる細胞死の型はアポトーシスである.そのなかで重要な位置を占めるミトコンドリアにおける反応および抗アポトーシス因子について概要を紹介する.

2,716 citations

Journal ArticleDOI
TL;DR: It is proposed that brain organization is shaped by an economic trade-off between minimizing costs and allowing the emergence of adaptively valuable topological patterns of anatomical or functional connectivity between multiple neuronal populations.
Abstract: On the basis of data from brain network science, Bullmore and Sporns propose that brain organization is shaped by an economical trade-off between minimizing wiring cost and maximizing the efficiency of information transfer between neuronal populations and discuss this idea in the context of psychiatric and neurological disorders. The brain is expensive, incurring high material and metabolic costs for its size — relative to the size of the body — and many aspects of brain network organization can be mostly explained by a parsimonious drive to minimize these costs. However, brain networks or connectomes also have high topological efficiency, robustness, modularity and a 'rich club' of connector hubs. Many of these and other advantageous topological properties will probably entail a wiring-cost premium. We propose that brain organization is shaped by an economic trade-off between minimizing costs and allowing the emergence of adaptively valuable topological patterns of anatomical or functional connectivity between multiple neuronal populations. This process of negotiating, and re-negotiating, trade-offs between wiring cost and topological value continues over long (decades) and short (millisecond) timescales as brain networks evolve, grow and adapt to changing cognitive demands. An economical analysis of neuropsychiatric disorders highlights the vulnerability of the more costly elements of brain networks to pathological attack or abnormal development.

2,646 citations