scispace - formally typeset
Search or ask a question
Author

John M. DeLong

Bio: John M. DeLong is an academic researcher from Agriculture and Agri-Food Canada. The author has contributed to research in topics: Chlorophyll fluorescence & Malus. The author has an hindex of 22, co-authored 49 publications receiving 3657 citations.

Papers
More filters
Journal ArticleDOI
17 Feb 1999-Planta
TL;DR: In this paper, a modified version of the TBARS method was proposed for assessing the presence of malondialdehyde (MDA) and other non-MDA compounds absorbing at 532 nm.
Abstract: The occurrence of malondialdehyde (MDA), a secondary end product of the oxidation of polyunsatu- rated fatty acids, is considered a useful index of general lipid peroxidation A common method for measuring MDA, referred to as the thiobarbituric acid-reactive- substances (TBARS) assay, is to react it with thiobar- bituric acid (TBA) and record the absorbance at 532 nm However, many plants contain interfering compounds that also absorb at 532 nm, leading to overestimation of MDA values Extracts of plant tissues including purple eggplant (Solanum melongena L) fruit, carrot (Daucus carota L) roots, and spinach (Spinacia oleracea L) leaves were assessed for the presence of MDA and other non-MDA compounds absorbing at 532 nm A method described herein corrects for these interferences by subtracting the absorbance at 532 nm of a solution containing plant extract incubated without TBA from an identical solution containing TBA The reliability and eAciency of this spectrophotometric method was assessed by altering the relative ratios of exogenous MDA additions and/or extracts of red cabbage (Brassica oleracea L) leaves containing inter- fering compounds and then measuring MDA recovery Reliability was also validated through high-performance liquid chromatography and high-performance liquid chromatography-mass spectrometry techniques Results indicated that over 90% of exogenously added MDA could be recovered through the improved protocol If there were no corrections for interfering compounds, MDA equivalents were overestimated by up to 965% Interfering compounds were not detected in vegetables such as lettuce (Lactuca sativa L) and spinach which had low or negligible concentrations of anthocyanidin derivatives Comparisons between the TBARS method presented here and two currently accepted protocols indicated that the new modified method exhibits greater accuracy for quantifying TBA-MDA levels in tissues containing anthocyanins and/or other interfering com- pounds This modified protocol represents a facile and rapid method for assessment of lipid peroxidation in virtually all plant species that contain interfering com- pounds

3,090 citations

Journal ArticleDOI
TL;DR: Compared with the iodometric assay, the FOX method consistently generated less variable LOOH values, and the presence of authentic linoleic acid-OOHs in spiked avocado and spinach samples was identified with liquid chromatography-mass spectrometry techniques, which validated corresponding FOX assay results.
Abstract: The ferrous oxidation−xylenol orange (FOX) assay was adapted for quantifying lipid hydroperoxides (LOOHs) in plant extracts. Excised pieces of several fruit and vegetable species were exposed to 83 kJ m-2 day-1 of biologically effective ultraviolet B irradiance (UV-BBE) for 10−12 days to induce cellular oxidation. The LOOH and thiobarbituric acid reactive substance (TBARS) concentrations of these plant tissues were assessed with the FOX and iodometric assays for the former and a modified TBARS assay for the latter. There was generally good agreement between the FOX and iodometric methods both prior to and following the UV exposure. However, the iodometric assay appeared to have some difficulty in consistently quantifying lower LOOH levels (<11 μM), whereas the FOX assay measured LOOH concentrations as low as 5 μM. All tissues exhibited UV-induced increases in TBARS, indicating a marked degree of cellular oxidation in the exposed tissue segments. Compared with the iodometric assay, the FOX method consisten...

148 citations

Journal ArticleDOI
TL;DR: The future of CA storage may reside in a better understanding of what constitutes the lower O2 limit for metabolism and energy demands, improved product-response sensing capabilities, and the application of more dynamic forms ofCA storage technology.
Abstract: SummaryAdvances in research and technology in recent years in the field of controlled atmosphere (CA) storage have led to the development of many new protocols that recommend lower oxygen (O2) levels than those historically deemed “safe”. As some of these protocols and technologies have been adopted by commercial CA storage rooms, especially in the apple industry, it is now opportune to review the relationships between O2 levels, respiration, fermentation, and fruit quality retention. Lowering O2 levels during apple storage slows respiration, reduces ethylene biosynthesis, and slows fruit maturation and senescence. In addition, low O2 influences the expression of genes associated with cellular energy consumption.When O2 levels become limiting, aerobic mitochondrial respiration is inhibited and plant tissues engage in the energetically less-efficient fermentation pathway. The accumulation of fermentation-related volatiles may lead to off-flavours and odours. At low levels, or for short durations, fermentat...

74 citations

Journal ArticleDOI
TL;DR: In this article, 1-methylcyclopropene (1-MCP) was applied to apples for 24 hours at 20 °C before storage and were kept at 3 °C in either a controlled atmosphere (CA) of 2 kPa O 2 and <2.5 kPa CO 2 or in an air (RA) environment for up to 9 months.
Abstract: 'Redcort Cortland' and 'Redmax' and 'Summerland Mclntosh' apples (Malus xdomestica Borkh.) were treated with 900 nL.L -1 of 1-methylcyclopropene (1-MCP) for 24 hours at 20 °C before storage and were kept at 3 °C in either a controlled atmosphere (CA) of 2 kPa O 2 and <2.5 kPa CO 2 or in an air (RA) environment for up to 9 months. After 4.5 months, half of the fruit were treated with a second 900 nL.L -1 1-MCP application in air at 3 °C for 24 hours and then returned to RA or CA storage. At harvest and following removal at 3, 6, and 9 months and a 7-day shelf life at 20 °C, fruit firmness, titratable acidity (TA) and soluble solids content (SSC) were measured, while internal ethylene concentrations (IEC) in the apple core were quantified after 1 day at 20 °C. Upon storage removal and following a 21-day shelf life at 20 °C, disorder incidence was evaluated. 1-MCP-treated apples, particularly those held in CA-storage, were more firm and had lower IEC than untreated fruit. Higher TA levels were maintained with 1-MCP in all three strains from both storages, while SSC was not affected. Following the 6- and/or 9-month removals, 1-MCP suppressed superficial scald development in all strains and reduced core browning and senescent breakdown in RA-stored 'Redmax' and 'Summerland' and senescent breakdown in RA-stored 'Redcort'. 1-MCP generally maintained the quality of 'Cortland' and 'McIntosh' fruit held in CA and RA environments (particularly the former) to a higher degree than untreated apples over the 9-month storage period. A second midstorage application of 1-MCP at 3 °C did not improve poststorage fruit quality above a single, prestorage treatment.

69 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is shown that miR398 expression is downregulated transcriptionally by oxidative stresses, and this downregulation is important for posttranscriptional CSD1 and CSD2 mRNA accumulation and oxidative stress tolerance, and it is suggested that CSD 1 andCSD2 expression is fine-tuned by miR 398-directed mRNA cleavage.
Abstract: MicroRNAs (miRNAs) are a class of regulatory RNAs of ∼21 nucleotides that posttranscriptionally regulate gene expression by directing mRNA cleavage or translational inhibition. Increasing evidence points to a potential role of miRNAs in diverse physiological processes. miR398 targets two closely related Cu/Zn superoxide dismutases (cytosolic CSD1 and chloroplastic CSD2) that can detoxify superoxide radicals. CSD1 and CSD2 transcripts are induced in response to oxidative stress, but the regulatory mechanism of the induction is unknown. Here, we show that miR398 expression is downregulated transcriptionally by oxidative stresses, and this downregulation is important for posttranscriptional CSD1 and CSD2 mRNA accumulation and oxidative stress tolerance. We also provide evidence for an important role of miR398 in specifying the spatial and temporal expression patterns of CSD1 and CSD2 mRNAs. Our results suggest that CSD1 and CSD2 expression is fine-tuned by miR398-directed mRNA cleavage. Additionally, we show that transgenic Arabidopsis thaliana plants overexpressing a miR398-resistant form of CSD2 accumulate more CSD2 mRNA than plants overexpressing a regular CSD2 and are consequently much more tolerant to high light, heavy metals, and other oxidative stresses. Thus, relieving miR398-guided suppression of CSD2 in transgenic plants is an effective new approach to improving plant productivity under oxidative stress conditions.

1,184 citations

Journal ArticleDOI
TL;DR: Results indicate that treatment with low concentrations of ABA induced an antioxidative defence response against oxidative damage, but a high concentration of A BA induced an excessive generation of AOS and led to an oxidative damage in plant cells.
Abstract: Leaves of maize (Zea mays L.) seedlings were supplied with different concentrations of abscisic acid (ABA). Its effects on the levels of superoxide radical (O(2)(-)), hydrogen peroxide (H(2)O(2)) and the content of catalytic Fe, the activities of several antioxidative enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), the contents of several non-enzymatic antioxidants such as ascorbate (ASC), reduced glutathione (GSH), alpha-tocopherol (alpha-TOC) and carotenoid (CAR), and the degrees of the oxidative damage to the membrane lipids and proteins were examined. Treatment with 10 and 100 microM ABA significantly increased the levels of O(2)(-) and H(2)O(2), followed by an increase in activities of SOD, CAT, APX and GR, and the contents of ASC, GSH, alpha-TOC and CAR in a dose- and time-dependent pattern in leaves of maize seedlings. An oxidative damage expressed as lipid peroxidation, protein oxidation, and plasma membrane leakage did not occur except for a slight increase with 100 microM ABA treatment for 24 h. Treatment with 1,000 microM ABA led to a more abundant generation of O(2)(-) and H(2)O(2) and a significant increase in the content of catalytic Fe, which is critical for H(2)O(2)-dependent hydroxyl radical production. The activities of these antioxidative enzymes and the contents of alpha-TOC and CAR were still maintained at a higher level, but no longer further enhanced when compared with the treatment of 100 microM ABA. The contents of ASC and GSH had no changes in leaves treated with 1,000 microM ABA. These results indicate that treatment with low concentrations of ABA (10 to 100 microM) induced an antioxidative defence response against oxidative damage, but a high concentration of ABA (1,000 microM) induced an excessive generation of AOS and led to an oxidative damage in plant cells.

827 citations

Journal ArticleDOI
TL;DR: The recent availability of the inhibitor of ethylene perception, 1-methylcyclopropene (1-MCP), has resulted in an explosion of research on its effects on fruits and vegetables, both as a tool to further investigate the role of Ethylene in ripening and senescence, and as a commercial technology to improve maintenance of product quality.

818 citations

Journal ArticleDOI
TL;DR: In this review, assays used recently were selected for extended discussion, including discussion of the mechanisms underlying each assay and its application to various plants and foods.
Abstract: Recently, research on natural antioxidants has become increasingly active in various fields. Accordingly, numerous articles on natural antioxidants, including polyphenols, flavonoids, vitamins, and volatile chemicals, have been published. Assays developed to evaluate the antioxidant activity of plants and food constituents vary. Therefore, to investigate the antioxidant activity of chemical(s), choosing an adequate assay based on the chemical(s) of interest is critical. There are two general types of assays widely used for different antioxidant studies. One is an assay associated with lipid peroxidations, including the thiobarbituric acid assay (TBA), malonaldehyde/high-performance liquid chromatography (MA/HPLC) assay, malonaldehyde/gas chromatography (MA/GC) assay, β-carotene bleaching assay, and conjugated diene assay. Other assays are associated with electron or radical scavenging, including the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as...

798 citations

Journal ArticleDOI
TL;DR: The agronomy of the onion crop, the biochemistry of the health compounds and report on recent clinical data obtained using extracts from this species are reviewed.
Abstract: Onion (Allium cepa L.) is botanically included in the Liliaceae and species are found across a wide range of latitudes and altitudes in Europe, Asia, N. America and Africa. World onion production has increased by at least 25% over the past 10 years with current production being around 44 million tonnes making it the second most important horticultural crop after tomatoes. Because of their storage characteristics and durability for shipping, onions have always been traded more widely than most vegetables. Onions are versatile and are often used as an ingredient in many dishes and are accepted by almost all traditions and cultures. Onion consumption is increasing significantly, particularly in the USA and this is partly because of heavy promotion that links flavour and health. Onions are rich in two chemical groups that have perceived benefits to human health. These are the flavonoids and the alk(en)yl cysteine sulphoxides (ACSOs). Two flavonoid subgroups are found in onion, the anthocyanins, which impart a red/purple colour to some varieties and flavanols such as quercetin and its derivatives responsible for the yellow and brown skins of many other varieties. The ACSOs are the flavour precursors, which, when cleaved by the enzyme alliinase, generate the characteristic odour and taste of onion. The downstream products are a complex mixture of compounds which include thiosulphinates, thiosulphonates, mono-, di- and tri-sulphides. Compounds from onion have been reported to have a range of health benefits which include anticarcinogenic properties, antiplatelet activity, antithrombotic activity, antiasthmatic and antibiotic effects. Here we review the agronomy of the onion crop, the biochemistry of the health compounds and report on recent clinical data obtained using extracts from this species. Where appropriate we have compared the data with that obtained from garlic (Allium sativum L.) for which more information is widely available.

716 citations