scispace - formally typeset
Search or ask a question
Author

John M. Dwyer

Bio: John M. Dwyer is an academic researcher from University of Queensland. The author has contributed to research in topics: Species richness & Acacia harpophylla. The author has an hindex of 23, co-authored 72 publications receiving 1742 citations. Previous affiliations of John M. Dwyer include University of Lausanne & University of Bern.


Papers
More filters
Journal ArticleDOI
TL;DR: The study concludes that PALSAR data acquired when surface moisture and rainfall are minimal allow better estimation of the AGB of woody vegetation and that retrieval algorithms ideally need to consider differences in surface moisture conditions and vegetation structure.
Abstract: Focusing on woody vegetation in Queensland, Australia, the study aimed to establish whether the relationship between Advanced Land Observing Satellite (ALOS) Phased Array L-band SAR (PALSAR) HH and HV backscattering coefficients and above ground biomass (AGB) was consistent within and between structural formations (forests, woodlands and open woodlands, including scrub). Across these formations, 2781 plot-based measurements (from 1139 sites) of tree diameters by species were collated, from which AGB was estimated using generic allometric equations. For Queensland, PALSAR fine beam dual (FBD) 50 m strip data for 2007 were provided through the Japanese Space Exploration Agency's (JAXA) Kyoto and Carbon (K&C) Initiative, with up to 3 acquisitions available for each Reference System for Planning (RSP) paths. When individual strips acquired over Queensland were combined, `banding' was evident within the resulting mosaics, with this attributed to enhanced L-band backscatter following rainfall events in some areas. Reference to Advanced Microwave Scanning Radiometer-EOS (AMSR-E) data indicated that strips with enhanced L-band backscatter corresponded to areas with increased effective vegetation water content (kg m-2) and, to a lesser extent, soil moisture (g cm-3). Regardless of moisture conditions, L-band HV topographically normalized backscattering intensities backscatter (σfo) increased asymptotically with AGB, with the saturation level being greatest for forests and least for open woodlands. However, under conditions of relative maximum surface moisture, L-band HV and HH σfo was enhanced by as much as 2.5 and 4.0 dB respectively, particularly for forests of lower AGB, with this resulting in an overall reduction in dynamic range. The saturation level also reduced at L-band HH for forests and woodlands but remained similar for open woodlands. Differences in the rate of increase in both L-band HH and HV σfo with AGB were observed between forests and the woodland categories (for both relatively wet and dry conditions) with these attributed, in part, to differences in the size class distribution and stem density between non-remnant (secondary) forests and remnant woodlands of lower AGB. The study concludes that PALSAR data acquired when surface moisture and rainfall are minimal allow better estimation of the AGB of woody vegetation and that retrieval algorithms ideally need to consider differences in surface moisture conditions and vegetation structure.

255 citations

Journal ArticleDOI
TL;DR: It is established that plant biodiversity of mountain grasslands is negatively affected by N addition, and it is demonstrated that several local management and abiotic factors interact with N addition to drive plant community changes.
Abstract: Although the influence of nitrogen (N) addition on grassland plant communities has been widely studied, it is still unclear whether observed patterns and underlying mechanisms are constant across biomes. In this systematic review, we use meta-analysis and metaregression to investigate the influence of N addition (here referring mostly to fertilization) upon the biodiversity of temperate mountain grasslands (including montane, subalpine and alpine zones). Forty-two studies met our criteria of inclusion, resulting in 134 measures of effect size. The main general responses of mountain grasslands to N addition were increases in phytomass and reductions in plant species richness, as observed in lowland grasslands. More specifically, the analysis reveals that negative effects on species richness were exacerbated by dose (ha(-1) year(-1) ) and duration of N application (years) in an additive manner. Thus, sustained application of low to moderate levels of N over time had effects similar to short-term application of high N doses. The climatic context also played an important role: the overall effects of N addition on plant species richness and diversity (Shannon index) were less pronounced in mountain grasslands experiencing cool rather than warm summers. Furthermore, the relative negative effect of N addition on species richness was more pronounced in managed communities and was strongly negatively related to N-induced increases in phytomass, that is the greater the phytomass response to N addition, the greater the decline in richness. Altogether, this review not only establishes that plant biodiversity of mountain grasslands is negatively affected by N addition, but also demonstrates that several local management and abiotic factors interact with N addition to drive plant community changes. This synthesis yields essential information for a more sustainable management of mountain grasslands, emphasizing the importance of preserving and restoring grasslands with both low agricultural N application and limited exposure to N atmospheric deposition.

158 citations

Journal ArticleDOI
TL;DR: Analysis of 65 grasslands worldwide from the Nutrient Network experiment reveals that plant communities with higher α- and β-diversity have higher levels of ecosystem multifunctionality, and that this effect is amplified across scales.
Abstract: Biodiversity is declining in many local communities while also becoming increasingly homogenized across space. Experiments show that local plant species loss reduces ecosystem functioning and services, but the role of spatial homogenization of community composition and the potential interaction between diversity at different scales in maintaining ecosystem functioning remains unclear, especially when many functions are considered (ecosystem multifunctionality). We present an analysis of eight ecosystem functions measured in 65 grasslands worldwide. We find that more diverse grasslands—those with both species-rich local communities (α-diversity) and large compositional differences among localities (β-diversity)—had higher levels of multifunctionality. Moreover, α- and β-diversity synergistically affected multifunctionality, with higher levels of diversity at one scale amplifying the contribution to ecological functions at the other scale. The identity of species influencing ecosystem functioning differed among functions and across local communities, explaining why more diverse grasslands maintained greater functionality when more functions and localities were considered. These results were robust to variation in environmental drivers. Our findings reveal that plant diversity, at both local and landscape scales, contributes to the maintenance of multiple ecosystem services provided by grasslands. Preserving ecosystem functioning therefore requires conservation of biodiversity both within and among ecological communities.

158 citations

Journal ArticleDOI
01 Feb 2014-Ecology
TL;DR: This study used comprehensive specific leaf area (SLA) data from a diverse Australian annual plant system to examine how individual species and whole communities respond to natural and anthropogenic gradients, and to climatically different growing seasons, and investigated the influence of different leaf-sampling strategies on community-level results.
Abstract: Plant communities can respond to environmental changes by altering their species composition and by individuals (within species) adjusting their physiology. These responses can be captured by measuring key functional traits among and within species along important environmental gradients. Some anthropogenic changes (such as fertilizer runoff) are known to induce distinct community responses, but rarely have responses across natural and anthropogenic gradients been compared in the same system. In this study, we used comprehensive specific leaf area (SLA) data from a diverse Australian annual plant system to examine how individual species and whole communities respond to natural and anthropogenic gradients, and to climatically different growing seasons. We also investigated the influence of different leaf-sampling strategies on community-level results. Many species had similar mean SLA values but differed in SLA responses to spatial and temporal environmental variation. At the community scale, we identified distinct SLA responses to natural and anthropogenic gradients. Along anthropogenic gradients, increased mean SLA, coupled with SLA convergence, revealed evidence of competitive exclusion. This was further supported by the dominance of species turnover (vs. intraspecific variation) along these gradients. We also revealed strong temporal changes in SLA distributions in response to increasing growing-season precipitation. These climate-driven changes highlight differences among co-occurring species in their adaptive capacity to exploit abundant water resources during favorable seasons, differences that are likely to be important for species coexistence in this system. In relation to leaf-sampling strategies, we found that using leaves from a climatically different growing season can lead to misleading conclusions at the community scale.

147 citations

Journal ArticleDOI
01 Nov 2013-Ecology
TL;DR: Results show this plasticity can influence offspring fitness, potentially in adaptive ways, raising the possibility that adaptive nongenetic paternal effects may be more common than previously thought.
Abstract: The ability of females to adaptively influence offspring phenotype via maternal effects is widely acknowledged, but corresponding nongenetic paternal effects remain unexplored. Males can adjust sperm phenotype in response to local conditions, but the transgenerational consequences of this plasticity are unknown. We manipulated paternal density of a broadcast spawner (Styela plicata, a solitary ascidean) using methods shown previously to alter sperm phenotype in the field, then conducted in vitro fertilizations that excluded maternal effects and estimated offspring performance under natural conditions. Offspring sired by males from low-density experimental populations developed faster and had a higher hatching success than offspring sired by males living in high densities. In the field, offspring survived relatively better when their environment matched their father's, raising the possibility that fathers can adaptively influence the phenotype of their offspring according to local conditions. As the only difference between offspring is whether they were artificially fertilized by sperm from males kept in high- vs. low-density cages, we can unequivocally attribute any differences in offspring performance to an environmentally induced paternal effect. Males of many species manipulate the phenotype of their sperm in response to sperm competition: our results show this plasticity can influence offspring fitness, potentially in adaptive ways, raising the possibility that adaptive nongenetic paternal effects may be more common than previously thought.

99 citations


Cited by
More filters
Journal ArticleDOI
02 Apr 2015-Nature
TL;DR: A terrestrial assemblage database of unprecedented geographic and taxonomic coverage is analysed to quantify local biodiversity responses to land use and related changes and shows that in the worst-affected habitats, pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%.
Abstract: Human activities, especially conversion and degradation of habitats, are causing global biodiversity declines. How local ecological assemblages are responding is less clear--a concern given their importance for many ecosystem functions and services. We analysed a terrestrial assemblage database of unprecedented geographic and taxonomic coverage to quantify local biodiversity responses to land use and related changes. Here we show that in the worst-affected habitats, these pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%. We estimate that, globally, these pressures have already slightly reduced average within-sample richness (by 13.6%), total abundance (10.7%) and rarefaction-based richness (8.1%), with changes showing marked spatial variation. Rapid further losses are predicted under a business-as-usual land-use scenario; within-sample richness is projected to fall by a further 3.4% globally by 2100, with losses concentrated in biodiverse but economically poor countries. Strong mitigation can deliver much more positive biodiversity changes (up to a 1.9% average increase) that are less strongly related to countries' socioeconomic status.

2,532 citations

Journal ArticleDOI
TL;DR: In this article, the authors identify ten contrasting perspectives that shape the vulnerability debate but have not been discussed collectively and present a set of global vulnerability drivers that are known with high confidence: (1) droughts eventually occur everywhere; (2) warming produces hotter Droughts; (3) atmospheric moisture demand increases nonlinearly with temperature during drought; (4) mortality can occur faster in hotter Drought, consistent with fundamental physiology; (5) shorter Drought can become lethal under warming, increasing the frequency of lethal Drought; and (6) mortality happens rapidly
Abstract: Patterns, mechanisms, projections, and consequences of tree mortality and associated broad-scale forest die-off due to drought accompanied by warmer temperatures—“hotter drought”, an emerging characteristic of the Anthropocene—are the focus of rapidly expanding literature. Despite recent observational, experimental, and modeling studies suggesting increased vulnerability of trees to hotter drought and associated pests and pathogens, substantial debate remains among research, management and policy-making communities regarding future tree mortality risks. We summarize key mortality-relevant findings, differentiating between those implying lesser versus greater levels of vulnerability. Evidence suggesting lesser vulnerability includes forest benefits of elevated [CO2] and increased water-use efficiency; observed and modeled increases in forest growth and canopy greening; widespread increases in woody-plant biomass, density, and extent; compensatory physiological, morphological, and genetic mechanisms; dampening ecological feedbacks; and potential mitigation by forest management. In contrast, recent studies document more rapid mortality under hotter drought due to negative tree physiological responses and accelerated biotic attacks. Additional evidence suggesting greater vulnerability includes rising background mortality rates; projected increases in drought frequency, intensity, and duration; limitations of vegetation models such as inadequately represented mortality processes; warming feedbacks from die-off; and wildfire synergies. Grouping these findings we identify ten contrasting perspectives that shape the vulnerability debate but have not been discussed collectively. We also present a set of global vulnerability drivers that are known with high confidence: (1) droughts eventually occur everywhere; (2) warming produces hotter droughts; (3) atmospheric moisture demand increases nonlinearly with temperature during drought; (4) mortality can occur faster in hotter drought, consistent with fundamental physiology; (5) shorter droughts occur more frequently than longer droughts and can become lethal under warming, increasing the frequency of lethal drought nonlinearly; and (6) mortality happens rapidly relative to growth intervals needed for forest recovery. These high-confidence drivers, in concert with research supporting greater vulnerability perspectives, support an overall viewpoint of greater forest vulnerability globally. We surmise that mortality vulnerability is being discounted in part due to difficulties in predicting threshold responses to extreme climate events. Given the profound ecological and societal implications of underestimating global vulnerability to hotter drought, we highlight urgent challenges for research, management, and policy-making communities.

1,786 citations

01 Dec 2010
TL;DR: In this article, the authors suggest a reduction in the global NPP of 0.55 petagrams of carbon, which would not only weaken the terrestrial carbon sink, but would also intensify future competition between food demand and biofuel production.
Abstract: Terrestrial net primary production (NPP) quantifies the amount of atmospheric carbon fixed by plants and accumulated as biomass. Previous studies have shown that climate constraints were relaxing with increasing temperature and solar radiation, allowing an upward trend in NPP from 1982 through 1999. The past decade (2000 to 2009) has been the warmest since instrumental measurements began, which could imply continued increases in NPP; however, our estimates suggest a reduction in the global NPP of 0.55 petagrams of carbon. Large-scale droughts have reduced regional NPP, and a drying trend in the Southern Hemisphere has decreased NPP in that area, counteracting the increased NPP over the Northern Hemisphere. A continued decline in NPP would not only weaken the terrestrial carbon sink, but it would also intensify future competition between food demand and proposed biofuel production.

1,780 citations

Journal ArticleDOI
TL;DR: In this article, the societal and ecological consequences of forest die-off are considered. But the authors do not consider the impact of forest mortality on terrestrial ecosystems, climate-ecosystem interactions, and carbon-cycle feedbacks.
Abstract: The multitude of forest die-off events within the last decade strongly suggests that forest mortality is an emerging global phenomenon, constituting a major uncertainty in projections of climate impacts on terrestrial ecosystems, climate-ecosystem interactions, and carbon-cycle feedbacks. This Review considers the societal and ecological consequences of dying forests.

969 citations

Journal ArticleDOI
TL;DR: In this paper, a manual of acarology is referred to read because it is an inspiring book to give you more chance to get experiences and also thoughts and download the book in this website lists can give more advantages.
Abstract: Downloading the book in this website lists can give you more advantages. It will show you the best book collections and completed collections. So many books can be found in this website. So, this is not only this manual of acarology. However, this book is referred to read because it is an inspiring book to give you more chance to get experiences and also thoughts. This is simple, read the soft file of the book and you get it.

896 citations