scispace - formally typeset
Search or ask a question
Author

John M. Gowdy

Other affiliations: West Virginia University
Bio: John M. Gowdy is an academic researcher from Rensselaer Polytechnic Institute. The author has contributed to research in topics: Sustainability & Evolutionary economics. The author has an hindex of 44, co-authored 176 publications receiving 6599 citations. Previous affiliations of John M. Gowdy include West Virginia University.


Papers
More filters
BookDOI
01 Mar 2010
TL;DR: In this article, the authors show that diversity in biological diversity relates to the operations of ecosystems in at least three ways: 1. increase in diversity often leads to an increase in productivity due to complementary traits among species for resource use, and productivity itself underpins many ecosystem services, 2. increased diversity leads to increased response diversity (range of traits related to how species within the same functional group respond to environmental drivers) resulting in less variability in functioning over time as environment changes, and 3. idiosyncratic effects due to keystone species properties and unique trait-combinations which may result
Abstract: All ecosystems are shaped by people, directly or indirectly and all people, rich or poor, rural or urban, depend on the capacity of ecosystems to generate essential ecosystem services. In this sense, people and ecosystems are interdependent social-ecological systems. The ecosystem concept describes the interrelationships between living organisms (people included) and the non-living environment and provides a holistic approach to understanding the generation of services from an environment that both delivers benefits to and imposes costs on people. Variation in biological diversity relates to the operations of ecosystems in at least three ways: 1. increase in diversity often leads to an increase in productivity due to complementary traits among species for resource use, and productivity itself underpins many ecosystem services, 2. increased diversity leads to an increase in response diversity (range of traits related to how species within the same functional group respond to environmental drivers) resulting in less variability in functioning over time as environment changes, 3. idiosyncratic effects due to keystone species properties and unique trait-combinations which may result in a disproportional effect of losing one particular species compared to the effect of losing individual species at random. Ecosystems produce multiple services and these interact in complex ways, different services being interlinked, both negatively and positively. Delivery of many services will therefore vary in a correlated manner, but when an ecosystem is managed principally for the delivery of a single service (e.g. food production), other services are nearly always affected negatively. Ecosystems vary in their ability to buffer and adapt to both natural and anthropogenic changes as well as recover after changes (i.e. resilience). When subjected to severe change, ecosystems may cross thresholds and move into different and often less desirable ecological states or trajectories. A major challenge is how to design ecosystem management in ways that maintain resilience and avoids passing undesirable thresholds. There is clear evidence for a central role of biodiversity in the delivery of some – but not all - services, viewed individually. However, ecosystems need to be managed to deliver multiple services to sustain human well-being and also managed at the level of landscapes and seascapes in ways that avoid the passing of dangerous tipping-points. We can state with high certainty that maintaining functioning ecosystems capable of delivering multiple services requires a general approach to sustaining biodiversity, in the long-term also when a single service is the focus.

510 citations

Posted Content
TL;DR: Kumar et al. as mentioned in this paper presented the economic logic behind the concept of discounting the future and discussed how it applies to biodiversity conservation and how to account for the effects of biodiversity and ecosystem losses in the immediate and distant future.
Abstract: This chapter presents the economic logic behind the concept of discounting the future and discusses how it applies to biodiversity conservation. How should economists account for the effects of biodiversity and ecosystem losses in the immediate and distant future? We discuss how to integrate traditional cost-benefit analysis with other approaches to understand and measure, where possible, environmental values. We conclude that losses of biodiversity and ecosystems have properties that make it difficult to apply standard welfare analysis including discounting the future. Difficulties include: (1) it is a phenomenon having global as well as local consequences, (2) its impacts are long-term and irreversible, (3) pure uncertainty is pervasive, (4) changes are non-marginal and non-linear. And (5) questions of inter- and intra-generational equity are central. This paper will be published as Chapter Six in Pushpam Kumar (ed.). An output of TEEB: The Economics of Ecosystems and Biodiversity. London: Earthscan. 2010.

494 citations

Journal ArticleDOI
TL;DR: In this paper, the suitability of payments for ecosystem services and the most important challenges they face are discussed, while over-reliance on payments as win-win solutions might lead to ineffective outcomes.
Abstract: In this commentary we critically discuss the suitability of payments for ecosystem services and the most important challenges they face. While such instruments can play a role in improving environmental governance, we argue that over-reliance on payments as win-win solutions might lead to ineffective outcomes, similar to earlier experience with integrated conservation and development projects. Our objective is to raise awareness, particularly among policy makers and practitioners, about the limitations of such instruments and to encourage a dialogue about the policy contexts in which they might be appropriate.

391 citations

Journal ArticleDOI
TL;DR: This article examined the relationship between measures of subjective well-being and attitudes regarding ozone pollution and species extinction using data from the British Household Panel Survey and found that a negative coefficient for concern about ozone pollution on individual's wellbeing and a positive one for concern regarding species extinction.

383 citations

Journal ArticleDOI
TL;DR: In this paper, the authors argue that a prerequisite to progress in such public deliberations is that participants be very cognizant of the extreme relevance of soils to many aspects of their daily life, and that, as long as this prerequisite is satisfied, the combination of deliberative decision-making methods and of a sound scientific approach to quantify soil functions/services is a very promising avenue to manage effectively and ethically the priceless heritage that soils constitute.
Abstract: Over the last few years, considerable attention has been devoted in the scientific literature and in the media to the concept of "ecosystem" services of soils. The monetary valuation of these services, demanded by many governments and international agencies, is often depicted as a necessary condition for the preservation of the natural capital that soils represent. This focus on soil services is framed in the context of a general interest in ecosystem services that allegedly started in 1997, and took off in earnest after 2005. The careful analysis of the literature proposed in this article shows that, in fact, interest in the multifunctionality of soils emerged already in the mid-60s, at a time when hundreds of researchers worldwide were trying, and largely failing, to figure out how to put price tags meaningfully on "nature's services." Soil scientists, since, have tried to better understand various functions/services of soils, as well as their possible relation with key soil characteristics, like biodiversity. They have also tried to make progress on the challenging quantification of soil functions/services. However, researchers have shown very little interest in monetary valuation, undoubtedly in part because it is not clear what economic and financial markets might do with prices of soil functions/services, even if we could somehow come up with such numbers, and because there is no assurance at all, based on neoclassical economic theory, that markets would manage soil resources optimally. Instead of monetary valuation, focus in the literature has been put on decision-making methods, like Multi-Criteria Decision Analysis (MCDA) and Bayesian Belief Networks (BBN), which do not require the systematic monetization of soil functions/services and easily accommodate deliberative approaches involving a variety of stakeholders. A prerequisite to progress in such public deliberations is that participants be very cognizant of the extreme relevance of soils to many aspects of their daily life. We argue that, as long as this prerequisite is satisfied, the combination of deliberative decision-making methods and of a sound scientific approach to the quantification of soil functions/services is a very promising avenue to manage effectively and ethically the priceless heritage that soils constitute.

262 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, Zoey R. Herm, Tae-Hyun Bae, Jeffrey R. Long
Abstract: Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, Zoey R. Herm, Tae-Hyun Bae, Jeffrey R. Long

5,389 citations

Journal ArticleDOI
TL;DR: Kahneman as mentioned in this paper made a statement based on worked out together with Shane Federik the quirkiness of human judgment, which was later used in his speech at the Nobel Prize in economics.
Abstract: Daniel Kahneman received the Nobel Prize in economics sciences in 2002, December 8, Stockholm, Sweden. This article is the edited version of his Nobel Prize lecture. The author comes back to the problems he has studied with the late Amos Tversky and to debates conducting for several decades already. The statement is based on worked out together with Shane Federik the quirkiness of human judgment. Language: ru

4,462 citations

Journal Article
TL;DR: Prospect Theory led cognitive psychology in a new direction that began to uncover other human biases in thinking that are probably not learned but are part of the authors' brain’s wiring.
Abstract: In 1974 an article appeared in Science magazine with the dry-sounding title “Judgment Under Uncertainty: Heuristics and Biases” by a pair of psychologists who were not well known outside their discipline of decision theory. In it Amos Tversky and Daniel Kahneman introduced the world to Prospect Theory, which mapped out how humans actually behave when faced with decisions about gains and losses, in contrast to how economists assumed that people behave. Prospect Theory turned Economics on its head by demonstrating through a series of ingenious experiments that people are much more concerned with losses than they are with gains, and that framing a choice from one perspective or the other will result in decisions that are exactly the opposite of each other, even if the outcomes are monetarily the same. Prospect Theory led cognitive psychology in a new direction that began to uncover other human biases in thinking that are probably not learned but are part of our brain’s wiring.

4,351 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provided an updated estimate based on updated unit ecosystem service values and land use change estimates between 1997 and 2011, using the same methods as in the 1997 paper but with updated data, the estimate for the total global ecosystem services in 2011 is $125 trillion/yr (assuming updated unit values and changes to biome areas).
Abstract: In 1997, the global value of ecosystem services was estimated to average $33 trillion/yr in 1995 $US ($46 trillion/yr in 2007 $US). In this paper, we provide an updated estimate based on updated unit ecosystem service values and land use change estimates between 1997 and 2011. We also address some of the critiques of the 1997 paper. Using the same methods as in the 1997 paper but with updated data, the estimate for the total global ecosystem services in 2011 is $125 trillion/yr (assuming updated unit values and changes to biome areas) and $145 trillion/yr (assuming only unit values changed), both in 2007 $US. From this we estimated the loss of eco-services from 1997 to 2011 due to land use change at $4.3–20.2 trillion/yr, depending on which unit values are used. Global estimates expressed in monetary accounting units, such as this, are useful to highlight the magnitude of eco-services, but have no specific decision-making context. However, the underlying data and models can be applied at multiple scales to assess changes resulting from various scenarios and policies. We emphasize that valuation of eco-services (in whatever units) is not the same as commodification or privatization. Many eco-services are best considered public goods or common pool resources, so conventional markets are often not the best institutional frameworks to manage them. However, these services must be (and are being) valued, and we need new, common asset institutions to better take these values into account.

3,932 citations