scispace - formally typeset
Search or ask a question
Author

John M. Hanchar

Bio: John M. Hanchar is an academic researcher from Memorial University of Newfoundland. The author has contributed to research in topics: Zircon & Geology. The author has an hindex of 37, co-authored 112 publications receiving 11924 citations. Previous affiliations of John M. Hanchar include Argonne National Laboratory & George Washington University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a selection of both the most typical, but also of the less common, features seen in zircon, categorized according to the different geological processes responsible for their formation are presented.
Abstract: The mineral zircon is extremely variable both in terms of external morphology and internal textures. These features reflect the geologic history of the mineral, especially the relevant episode(s) of magmatic or metamorphic crystallization (and recrystallization), strain imposed both by external forces and by internal volume expansion caused by metamictization, and chemical alteration. The paper presents a selection of both the most typical, but also of the less common, features seen in zircon, categorized according to the different geological processes responsible for their formation. The atlas is intended as a general guide for the interpretation of zircon characteristics, and of related isotopic data. Zircon has become one of the most widely used minerals for the extraction of information on the prehistory and genesis of magmatic, metamorphic and sedimentary rocks. Much of the geological usefulness of zircon stems from its suitability as a geochronometer based on the decay of U (and Th) to Pb, but in addition it is also the major host of the radiogenic isotopic tracer Hf, and it is used to determine oxygen isotopic compositions and REE and other trace element abundances, all of which yield useful clues concerning the history of the host rock, and in some case, the parent rock in which the precursor zircon crystallized. One of the major advantages of zircon is its ability to survive magmatic, metamorphic and erosional processes that destroy most other common minerals. Zircon-forming events tend to be preserved as distinct structural entities on a pre-existing zircon grain. Because of this ability, quite commonly zircon consists of distinct segments, each preserving a particular period of zircon-formation (or consumption). A long experience and modern instrumentation and techniques have provided the “zircon community” the means to image and interpret preserved textures, and hence to decipher the history and evolution of a rock. One …

3,069 citations

Journal ArticleDOI
TL;DR: In this article, the results from a second characterisation of the 91500 zircon, including data from electron probe microanalysis, laser ablation inductively coupled plasma-mass spectrometer (LA-ICP-MS), secondary ion mass spectrometry (SIMS), and laser fluorination analyses, were reported.
Abstract: This paper reports the results from a second characterisation of the 91500 zircon, including data from electron probe microanalysis, laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS), secondary ion mass spectrometry (SIMS) and laser fluorination analyses. The focus of this initiative was to establish the suitability of this large single zircon crystal for calibrating in situ analyses of the rare earth elements and oxygen isotopes, as well as to provide working values for key geochemical systems. In addition to extensive testing of the chemical and structural homogeneity of this sample, the occurrence of banding in 91500 in both backscattered electron and cathodoluminescence images is described in detail. Blind intercomparison data reported by both LA-ICP-MS and SIMS laboratories indicate that only small systematic differences exist between the data sets provided by these two techniques. Furthermore, the use of NIST SRM 610 glass as the calibrant for SIMS analyses was found to introduce little or no systematic error into the results for zircon. Based on both laser fluorination and SIMS data, zircon 91500 seems to be very well suited for calibrating in situ oxygen isotopic analyses.

1,131 citations

Journal ArticleDOI
TL;DR: Zircon exhibits an extraordinary memory as mentioned in this paper and its stability, durability, low solubility and low elemental diffusivities combine to preserve in it a record of most of the important events that have affected it, its host rocks, and the crust of which it is a part.

481 citations

Journal ArticleDOI
TL;DR: In this article, a geochronological and multi-isotopic study on rocks from the upper crust of the Kohistan Paleo-Island Arc that formed in the equatorial part of the Neo-Tethys Ocean is presented.

335 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The importance of zircon in crustal evolution studies is underscored by its predominant use in U-Th-Pb geochronology and investigations of the temporal evolution of both the crust and lithospheric mantle as discussed by the authors.
Abstract: Zircon is the main mineral in the majority of igneous and metamorphic rocks with Zr as an essential structural constituent. It is a host for significant fractions of the whole-rock abundance of U, Th, Hf, and the REE (Sawka 1988, Bea 1996, O’Hara et al. 2001). These elements are important geochemically as process indicators or parent isotopes for age determination. The importance of zircon in crustal evolution studies is underscored by its predominant use in U-Th-Pb geochronology and investigations of the temporal evolution of both the crust and lithospheric mantle. In the past decade an increasing interest in the composition of zircon, trace-elements in particular, has been motivated by the effort to better constrain in situ microprobe-acquired isotopic ages. Electron-beam compositional imaging and isotope-ratio measurement by in situ beam techniques—and the micrometer-scale spatial resolution that is possible—has revealed in many cases that single zircon crystals contain a record of multiple geologic events. Such events can either be zircon-consuming, alteration, or zircon-forming and may be separated in time by millions or billions of years. In many cases, calculated zircon isotopic ages do not coincide with ages of geologic events determined from other minerals or from whole-rock analysis. To interpret the geologic validity and significance of multiple ages, and ages unsupported by independent analysis of other isotopic systems, has been the impetus for most past investigations of zircon composition. Some recent compositional investigations of zircon have not been directly related to geochronology, but to the ability of zircon to influence or record petrogenetic processes in igneous and metamorphic systems. Sedimentary rocks may also contain a significant fraction of zircon. Although authigenic zircon has been reported (Saxena 1966, Baruah et al. 1995, Hower et al. 1999), it appears to be very rare and may in fact be related to …

3,777 citations

Journal ArticleDOI
TL;DR: In this paper, a selection of both the most typical, but also of the less common, features seen in zircon, categorized according to the different geological processes responsible for their formation are presented.
Abstract: The mineral zircon is extremely variable both in terms of external morphology and internal textures. These features reflect the geologic history of the mineral, especially the relevant episode(s) of magmatic or metamorphic crystallization (and recrystallization), strain imposed both by external forces and by internal volume expansion caused by metamictization, and chemical alteration. The paper presents a selection of both the most typical, but also of the less common, features seen in zircon, categorized according to the different geological processes responsible for their formation. The atlas is intended as a general guide for the interpretation of zircon characteristics, and of related isotopic data. Zircon has become one of the most widely used minerals for the extraction of information on the prehistory and genesis of magmatic, metamorphic and sedimentary rocks. Much of the geological usefulness of zircon stems from its suitability as a geochronometer based on the decay of U (and Th) to Pb, but in addition it is also the major host of the radiogenic isotopic tracer Hf, and it is used to determine oxygen isotopic compositions and REE and other trace element abundances, all of which yield useful clues concerning the history of the host rock, and in some case, the parent rock in which the precursor zircon crystallized. One of the major advantages of zircon is its ability to survive magmatic, metamorphic and erosional processes that destroy most other common minerals. Zircon-forming events tend to be preserved as distinct structural entities on a pre-existing zircon grain. Because of this ability, quite commonly zircon consists of distinct segments, each preserving a particular period of zircon-formation (or consumption). A long experience and modern instrumentation and techniques have provided the “zircon community” the means to image and interpret preserved textures, and hence to decipher the history and evolution of a rock. One …

3,069 citations

Journal ArticleDOI
TL;DR: In this article, a three-layer crust consisting of upper, middle, and lower crust is divided into type sections associated with different tectonic provinces, in which P wave velocities increase progressively with depth and there is a large variation in average P wave velocity of the lower crust between different type sections.
Abstract: Geophysical, petrological, and geochemical data provide important clues about the composition of the deep continental crust. On the basis of seismic refraction data, we divide the crust into type sections associated with different tectonic provinces. Each shows a three-layer crust consisting of upper, middle, and lower crust, in which P wave velocities increase progressively with depth. There is large variation in average P wave velocity of the lower crust between different type sections, but in general, lower crustal velocities are high (>6.9 km s−1) and average middle crustal velocities range between 6.3 and 6.7 km s−1. Heat-producing elements decrease with depth in the crust owing to their depletion in felsic rocks caused by granulite facies metamorphism and an increase in the proportion of mafic rocks with depth. Studies of crustal cross sections show that in Archean regions, 50–85% of the heat flowing from the surface of the Earth is generated within the crust. Granulite terrains that experienced isobaric cooling are representative of middle or lower crust and have higher proportions of mafic rocks than do granulite terrains that experienced isothermal decompression. The latter are probably not representative of the deep crust but are merely upper crustal rocks that have been through an orogenic cycle. Granulite xenoliths provide some of the deepest samples of the continental crust and are composed largely of mafic rock types. Ultrasonic velocity measurements for a wide variety of deep crustal rocks provide a link between crustal velocity and lithology. Meta-igneous felsic, intermediate and mafic granulite, and amphibolite facies rocks are distinguishable on the basis of P and S wave velocities, but metamorphosed shales (metapelites) have velocities that overlap the complete velocity range displayed by the meta-igneous lithologies. The high heat production of metapelites, coupled with their generally limited volumetric extent in granulite terrains and xenoliths, suggests they constitute only a small proportion of the lower crust. Using average P wave velocities derived from the crustal type sections, the estimated areal extent of each type of crust, and the average compositions of different types of granulites, we estimate the average lower and middle crust composition. The lower crust is composed of rocks in the granulite facies and is lithologically heterogeneous. Its average composition is mafic, approaching that of a primitive mantle-derived basalt, but it may range to intermediate bulk compositions in some regions. The middle crust is composed of rocks in the amphibolite facies and is intermediate in bulk composition, containing significant K, Th, and U contents. Average continental crust is intermediate in composition and contains a significant proportion of the bulk silicate Earth's incompatible trace element budget (35–55% of Rb, Ba, K, Pb, Th, and U).

2,909 citations

Journal ArticleDOI
TL;DR: In this article, the first finding of continental crust-derived Precambrian zircons in garnet/spinel pyroxenite veins within mantle xenoliths carried by the Neogene Hannuoba basalt in the central zone of the North China Craton (NCC).
Abstract: We present the first finding of continental crust-derived Precambrian zircons in garnet/spinel pyroxenite veins within mantle xenoliths carried by the Neogene Hannuoba basalt in the central zone of the North China Craton (NCC). Petrological and geochemical features indicate that these mantle-derived composite xenoliths were formed by silicic melt^lherzolite interaction. The Precambrian zircon ages can be classified into three age groups of 2·4^2·5 Ga, 1·6^2·2 Ga and 0·6^1·2 Ga, coinciding with major geological events in the NCC. These Precambrian zircons fall in the field of continental granitoid rocks in plots of U/Yb vs Hf and Y. Their igneous-type REE patterns and metamorphic zircon type CL images indicate that they were not crystallized during melt^peridotite interaction and subsequent high-pressure metamorphism.The 2·5 Ga zircons have positive eHf(t) values (2·9^10·6), whereas the younger Precambrian zircons are dominated by negative eHf(t) values, indicating an ancient continental crustal origin.These observations suggest that the Precambrian zircons were xenocrysts that survived melting of recycled continental crustal rocks and were then injected with silicate melt into the host peridotite. In addition to the Precambrian zircons, igneous zircons of 315 3 Ma (2 ), 80^170 Ma and 48^64 Ma were separated from the garnet/spinel pyroxenite veins; these provide evidence for lower continental crust and oceanic crust recycling-induced multi-episodic melt^peridotite interactions in the central zone of the NCC. The combination of the positive eHf(t) values (2·91^24·6) of the 315 Ma zircons with the rare occurrence of 302^324 Ma subduction-related diorite^granite plutons in the northern margin of the NCC implies that the 315 Ma igneous zircons might record melt^peridotite interactions in the lithospheric mantle induced by Palaeo-Asian oceanic crust subduction. Igneous zircons of age 80^170 Ma generally coexist with the Precambrian metamorphic zircons and have lower Ce/Yb and Th/U ratios, higher U/Yb ratios and greater negative Eu anomalies.The eHf(t) values of these zircons vary greatly from ^47·6 to 24·6.The 170^110 Ma zircons are generally characterized by negative eHf(t) values, whereas the 110^100 Ma zircons have positive eHf(t) values.These observations suggest that melt^peridotite interactions at 80^170 Ma were induced by partial melting of recycled continental crust. The 48^64 Ma igneous zircons are characterized by negligible Ce anomalies, unusually high REE, U and Th contents, and positive eHf(t) values.These features imply that the melt^peridotite interactions at 48^64 Ma could be associated with a depleted mantle-derived carbonate melt or fluid.

2,753 citations