scispace - formally typeset
Search or ask a question
Author

John M. Lee

Other affiliations: Purdue University, Harvard University, Texas Tech University  ...read more
Bio: John M. Lee is an academic researcher from University of Washington. The author has contributed to research in topics: Manifold & Einstein. The author has an hindex of 24, co-authored 73 publications receiving 8588 citations. Previous affiliations of John M. Lee include Purdue University & Harvard University.


Papers
More filters
Book
23 Sep 2002
TL;DR: In this paper, a review of topology, linear algebra, algebraic geometry, and differential equations is presented, along with an overview of the de Rham Theorem and its application in calculus.
Abstract: Preface.- 1 Smooth Manifolds.- 2 Smooth Maps.- 3 Tangent Vectors.- 4 Submersions, Immersions, and Embeddings.- 5 Submanifolds.- 6 Sard's Theorem.- 7 Lie Groups.- 8 Vector Fields.- 9 Integral Curves and Flows.- 10 Vector Bundles.- 11 The Cotangent Bundle.- 12 Tensors.- 13 Riemannian Metrics.- 14 Differential Forms.- 15 Orientations.- 16 Integration on Manifolds.- 17 De Rham Cohomology.- 18 The de Rham Theorem.- 19 Distributions and Foliations.- 20 The Exponential Map.- 21 Quotient Manifolds.- 22 Symplectic Manifolds.- Appendix A: Review of Topology.- Appendix B: Review of Linear Algebra.- Appendix C: Review of Calculus.- Appendix D: Review of Differential Equations.- References.- Notation Index.- Subject Index

3,051 citations

Book
01 Jan 1997
TL;DR: Curvature and topology of tensors, manifolds, and vector bundles are discussed in detail in this article, where the Gauss-Bonnet Theorem and Jacobi Fields are considered.
Abstract: What Is Curvature?.- Review of Tensors, Manifolds, and Vector Bundles.- Definitions and Examples of Riemannian Metrics.- Connections.- Riemannian Geodesics.- Geodesics and Distance.- Curvature.- Riemannian Submanifolds.- The Gauss-Bonnet Theorem.- Jacobi Fields.- Curvature and Topology.

1,052 citations

Book
01 Jan 2000
TL;DR: In this paper, the Seifert-Van Kampen Theorem and Covering Maps are used to define topological spaces from old and connectedness and compactness of cell complexes.
Abstract: Preface.- 1 Introduction.- 2 Topological Spaces.- 3 New Spaces from Old.- 4 Connectedness and Compactness.- 5 Cell Complexes.- 6 Compact Surfaces.- 7 Homotopy and the Fundamental Group.- 8 The Circle.- 9 Some Group Theory.- 10 The Seifert-Van Kampen Theorem.- 11 Covering Maps.- 12 Group Actions and Covering Maps.- 13 Homology.- Appendix A: Review of Set Theory.- Appendix B: Review of Metric Spaces.- Appendix C: Review of Group Theory.- References.- Notation Index.- Subject Index.

542 citations

Journal ArticleDOI
TL;DR: In this article, a boundary problem for Riemannian Einstein metrics is studied, where the conformal class [S] is defined as the conformality of a metric on a compact (n + l)-dimensional manifold with bounding boxes.

465 citations


Cited by
More filters
Proceedings Article
09 Dec 2003
TL;DR: These are linear projective maps that arise by solving a variational problem that optimally preserves the neighborhood structure of the data set by finding the optimal linear approximations to the eigenfunctions of the Laplace Beltrami operator on the manifold.
Abstract: Many problems in information processing involve some form of dimensionality reduction. In this paper, we introduce Locality Preserving Projections (LPP). These are linear projective maps that arise by solving a variational problem that optimally preserves the neighborhood structure of the data set. LPP should be seen as an alternative to Principal Component Analysis (PCA) – a classical linear technique that projects the data along the directions of maximal variance. When the high dimensional data lies on a low dimensional manifold embedded in the ambient space, the Locality Preserving Projections are obtained by finding the optimal linear approximations to the eigenfunctions of the Laplace Beltrami operator on the manifold. As a result, LPP shares many of the data representation properties of nonlinear techniques such as Laplacian Eigenmaps or Locally Linear Embedding. Yet LPP is linear and more crucially is defined everywhere in ambient space rather than just on the training data points. This is borne out by illustrative examples on some high dimensional data sets.

4,318 citations

Book ChapterDOI
01 Jan 2011
TL;DR: Weakconvergence methods in metric spaces were studied in this article, with applications sufficient to show their power and utility, and the results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables.
Abstract: The author's preface gives an outline: "This book is about weakconvergence methods in metric spaces, with applications sufficient to show their power and utility. The Introduction motivates the definitions and indicates how the theory will yield solutions to problems arising outside it. Chapter 1 sets out the basic general theorems, which are then specialized in Chapter 2 to the space C[0, l ] of continuous functions on the unit interval and in Chapter 3 to the space D [0, 1 ] of functions with discontinuities of the first kind. The results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables. " The book develops and expands on Donsker's 1951 and 1952 papers on the invariance principle and empirical distributions. The basic random variables remain real-valued although, of course, measures on C[0, l ] and D[0, l ] are vitally used. Within this framework, there are various possibilities for a different and apparently better treatment of the material. More of the general theory of weak convergence of probabilities on separable metric spaces would be useful. Metrizability of the convergence is not brought up until late in the Appendix. The close relation of the Prokhorov metric and a metric for convergence in probability is (hence) not mentioned (see V. Strassen, Ann. Math. Statist. 36 (1965), 423-439; the reviewer, ibid. 39 (1968), 1563-1572). This relation would illuminate and organize such results as Theorems 4.1, 4.2 and 4.4 which give isolated, ad hoc connections between weak convergence of measures and nearness in probability. In the middle of p. 16, it should be noted that C*(S) consists of signed measures which need only be finitely additive if 5 is not compact. On p. 239, where the author twice speaks of separable subsets having nonmeasurable cardinal, he means "discrete" rather than "separable." Theorem 1.4 is Ulam's theorem that a Borel probability on a complete separable metric space is tight. Theorem 1 of Appendix 3 weakens completeness to topological completeness. After mentioning that probabilities on the rationals are tight, the author says it is an

3,554 citations

Journal ArticleDOI
TL;DR: This paper considers transmit precoding and receiver combining in mmWave systems with large antenna arrays and develops algorithms that accurately approximate optimal unconstrained precoders and combiners such that they can be implemented in low-cost RF hardware.
Abstract: Millimeter wave (mmWave) signals experience orders-of-magnitude more pathloss than the microwave signals currently used in most wireless applications and all cellular systems. MmWave systems must therefore leverage large antenna arrays, made possible by the decrease in wavelength, to combat pathloss with beamforming gain. Beamforming with multiple data streams, known as precoding, can be used to further improve mmWave spectral efficiency. Both beamforming and precoding are done digitally at baseband in traditional multi-antenna systems. The high cost and power consumption of mixed-signal devices in mmWave systems, however, make analog processing in the RF domain more attractive. This hardware limitation restricts the feasible set of precoders and combiners that can be applied by practical mmWave transceivers. In this paper, we consider transmit precoding and receiver combining in mmWave systems with large antenna arrays. We exploit the spatial structure of mmWave channels to formulate the precoding/combining problem as a sparse reconstruction problem. Using the principle of basis pursuit, we develop algorithms that accurately approximate optimal unconstrained precoders and combiners such that they can be implemented in low-cost RF hardware. We present numerical results on the performance of the proposed algorithms and show that they allow mmWave systems to approach their unconstrained performance limits, even when transceiver hardware constraints are considered.

3,146 citations

Book
23 Sep 2002
TL;DR: In this paper, a review of topology, linear algebra, algebraic geometry, and differential equations is presented, along with an overview of the de Rham Theorem and its application in calculus.
Abstract: Preface.- 1 Smooth Manifolds.- 2 Smooth Maps.- 3 Tangent Vectors.- 4 Submersions, Immersions, and Embeddings.- 5 Submanifolds.- 6 Sard's Theorem.- 7 Lie Groups.- 8 Vector Fields.- 9 Integral Curves and Flows.- 10 Vector Bundles.- 11 The Cotangent Bundle.- 12 Tensors.- 13 Riemannian Metrics.- 14 Differential Forms.- 15 Orientations.- 16 Integration on Manifolds.- 17 De Rham Cohomology.- 18 The de Rham Theorem.- 19 Distributions and Foliations.- 20 The Exponential Map.- 21 Quotient Manifolds.- 22 Symplectic Manifolds.- Appendix A: Review of Topology.- Appendix B: Review of Linear Algebra.- Appendix C: Review of Calculus.- Appendix D: Review of Differential Equations.- References.- Notation Index.- Subject Index

3,051 citations

Journal ArticleDOI
TL;DR: In this article, the Weyl anomaly for conformal field theories that can be described via the adS/CFT correspondence was calculated for the case d = 2, 4 and 6.
Abstract: We calculate the Weyl anomaly for conformal field theories that can be described via the adS/CFT correspondence. This entails regularizing the gravitational part of the corresponding supergravity action in a manner consistent with general covariance. Up to a constant, the anomaly only depends on the dimension d of the manifold on which the conformal field theory is defined. We present concrete expressions for the anomaly in the physically relevant cases d = 2,4 and 6. In d = 2 we find for the central charge c = 3l/2GN, in agreement with considerations based on the asymptotic symmetry algebra of adS3. In d = 4 the anomaly agrees precisely with that of the corresponding = 4 superconformal SU(N) gauge theory. The result in d = 6 provides new information for the (0, 2) theory, since its Weyl anomaly has not been computed previously. The anomaly in this case grows as N3, where N is the number of coincident M5 branes, and it vanishes for a Ricci-flat background.

2,206 citations