scispace - formally typeset
Search or ask a question
Author

John M. Starr

Bio: John M. Starr is an academic researcher from University of Edinburgh. The author has contributed to research in topics: Genome-wide association study & Population. The author has an hindex of 116, co-authored 695 publications receiving 48761 citations. Previous affiliations of John M. Starr include Maastricht University Medical Centre & Katholieke Universiteit Leuven.


Papers
More filters
Journal ArticleDOI
Mary F. Feitosa1, Aldi T. Kraja1, Daniel I. Chasman2, Yun J. Sung1  +296 moreInstitutions (86)
18 Jun 2018-PLOS ONE
TL;DR: In insights into the role of alcohol consumption in the genetic architecture of hypertension, a large two-stage investigation incorporating joint testing of main genetic effects and single nucleotide variant (SNV)-alcohol consumption interactions is conducted.
Abstract: Heavy alcohol consumption is an established risk factor for hypertension; the mechanism by which alcohol consumption impact blood pressure (BP) regulation remains unknown. We hypothesized that a genome-wide association study accounting for gene-alcohol consumption interaction for BP might identify additional BP loci and contribute to the understanding of alcohol-related BP regulation. We conducted a large two-stage investigation incorporating joint testing of main genetic effects and single nucleotide variant (SNV)-alcohol consumption interactions. In Stage 1, genome-wide discovery meta-analyses in ≈131K individuals across several ancestry groups yielded 3,514 SNVs (245 loci) with suggestive evidence of association (P < 1.0 x 10-5). In Stage 2, these SNVs were tested for independent external replication in ≈440K individuals across multiple ancestries. We identified and replicated (at Bonferroni correction threshold) five novel BP loci (380 SNVs in 21 genes) and 49 previously reported BP loci (2,159 SNVs in 109 genes) in European ancestry, and in multi-ancestry meta-analyses (P < 5.0 x 10-8). For African ancestry samples, we detected 18 potentially novel BP loci (P < 5.0 x 10-8) in Stage 1 that warrant further replication. Additionally, correlated meta-analysis identified eight novel BP loci (11 genes). Several genes in these loci (e.g., PINX1, GATA4, BLK, FTO and GABBR2) have been previously reported to be associated with alcohol consumption. These findings provide insights into the role of alcohol consumption in the genetic architecture of hypertension.

1,218 citations

Journal ArticleDOI
TL;DR: Age-associated cognitive decline-or normal (non-pathological, normative, usual) cognitive ageing-is an important human experience which differs in extent between individuals, and factors affecting general bodily ageing also influence cognitive functions in old age.
Abstract: Introduction: Age-associated cognitive decline—or normal (non-pathological, normative, usual) cognitive ageing—is an important human experience which differs in extent between individuals. The determinants of the differences in age-related cognitive decline are not fully understood. Progress in the field is taking place across many areas of biomedical and psychosocial sciences. Areas of agreement and controversy: The phenotype of normal cognitive ageing is well described. Some mental capabilities are well maintained into old age. From early adulthood, there are declines in mental domains such as processing speed, reasoning, memory and executive functions, some of which is underpinned by a decline in a general cognitive factor. There are contributions to understanding individual differences in normal cognitive ageing from genetics, general health and medical disorders such as atherosclerotic disease, biological processes such as inflammation, neurobiological changes, diet and lifestyle. Many of these effect sizes are small; some are poorly replicated; and in some cases, there is the possibility of reverse causation, with prior cognitive ability causing the supposed ‘cause’ of cognitive ability in old age. Emerging areas for developing research: Genome-wide scans are a likely source to establish genetic contributions. The role of vascular factors in cognitive ageing is increasingly studied and understood. The same applies to diet, biomarkers such as inflammation and lifestyle factors such as exercise. There are marked advances in brain imaging, affording better in vivo studies of brain correlates of cognitive changes. There is growing appreciation that factors affecting general bodily ageing also influence cognitive functions in old age.

928 citations

Journal ArticleDOI
TL;DR: DNA methylation-derived measures of accelerated aging are heritable traits that predict mortality independently of health status, lifestyle factors, and known genetic factors.
Abstract: Background: DNA methylation levels change with age. Recent studies have identified biomarkers of chronological age based on DNA methylation levels. It is not yet known whether DNA methylation age captures aspects of biological age. Results: Here we test whether differences between people’s chronological ages and estimated ages, DNA methylation age, predict all-cause mortality in later life. The difference between DNA methylation age and chronological age (Δage) was calculated in four longitudinal cohorts of older people. Meta-analysis of proportional hazards models from the four cohorts was used to determine the association between Δage and mortality. A 5-year higher Δage is associated with a 21% higher mortality risk, adjusting for age and sex. After further adjustments for childhood IQ, education, social class, hypertension, diabetes, cardiovascular disease, and APOE e4 status, there is a 16% increased mortality risk for those with a 5-year higher Δage. A pedigree-based heritability analysis of Δage was conducted in a separate cohort. The heritability of Δage was 0.43. Conclusions: DNA methylation-derived measures of accelerated aging are heritable traits that predict mortality independently of health status, lifestyle factors, and known genetic factors.

916 citations

Journal ArticleDOI
Jeanne E. Savage1, Philip R. Jansen1, Philip R. Jansen2, Sven Stringer1, Kyoko Watanabe1, Julien Bryois3, Christiaan de Leeuw1, Mats Nagel, Swapnil Awasthi4, Peter B. Barr5, Jonathan R. I. Coleman6, Katrina L. Grasby7, Anke R. Hammerschlag1, Jakob Kaminski4, Robert Karlsson3, Eva Krapohl8, Max Lam, Marianne Nygaard9, Chandra A. Reynolds10, Joey W. Trampush11, Hannah Young12, Delilah Zabaneh8, Sara Hägg3, Narelle K. Hansell13, Ida K. Karlsson3, Sten Linnarsson3, Grant W. Montgomery13, Grant W. Montgomery7, Ana B. Muñoz-Manchado3, Erin Burke Quinlan8, Gunter Schumann8, Nathan G. Skene3, Nathan G. Skene14, Bradley T. Webb5, Tonya White2, Dan E. Arking15, Dimitrios Avramopoulos15, Robert M. Bilder16, Panos Bitsios17, Katherine E. Burdick18, Katherine E. Burdick19, Katherine E. Burdick20, Tyrone D. Cannon21, Ornit Chiba-Falek, Andrea Christoforou22, Elizabeth T. Cirulli, Eliza Congdon16, Aiden Corvin23, Gail Davies24, Ian J. Deary24, Pamela DeRosse25, Pamela DeRosse26, Dwight Dickinson27, Srdjan Djurovic28, Srdjan Djurovic29, Gary Donohoe30, Emily Drabant Conley, Johan G. Eriksson31, Thomas Espeseth32, Nelson A. Freimer16, Stella G. Giakoumaki17, Ina Giegling33, Michael Gill23, David C. Glahn21, Ahmad R. Hariri34, Alex Hatzimanolis35, Alex Hatzimanolis36, Matthew C. Keller37, Emma Knowles21, Deborah C. Koltai34, Bettina Konte33, Jari Lahti31, Stephanie Le Hellard29, Todd Lencz25, Todd Lencz26, David C. Liewald24, Edythe D. London16, Astri J. Lundervold29, Anil K. Malhotra26, Anil K. Malhotra25, Ingrid Melle32, Ingrid Melle29, Derek W. Morris30, Anna C. Need38, William Ollier39, Aarno Palotie20, Aarno Palotie31, Aarno Palotie40, Antony Payton39, Neil Pendleton41, Russell A. Poldrack42, Katri Räikkönen31, Ivar Reinvang32, Panos Roussos18, Panos Roussos19, Dan Rujescu33, Fred W. Sabb43, Matthew A. Scult34, Olav B. Smeland32, Nikolaos Smyrnis35, Nikolaos Smyrnis36, John M. Starr24, Vidar M. Steen29, Nikos C. Stefanis35, Nikos C. Stefanis36, Richard E. Straub15, Kjetil Sundet32, Henning Tiemeier2, Aristotle N. Voineskos44, Daniel R. Weinberger15, Elisabeth Widen31, Jin Yu, Gonçalo R. Abecasis45, Ole A. Andreassen32, Gerome Breen6, Lene Christiansen9, Birgit Debrabant9, Danielle M. Dick5, Andreas Heinz4, Jens Hjerling-Leffler3, M. Arfan Ikram46, Kenneth S. Kendler5, Nicholas G. Martin7, Sarah E. Medland7, Nancy L. Pedersen3, Robert Plomin8, Tinca J. C. Polderman1, Stephan Ripke20, Stephan Ripke47, Stephan Ripke4, Sophie van der Sluis, Patrick Sullivan3, Patrick Sullivan48, Scott I. Vrieze12, Margaret J. Wright13, Danielle Posthuma1 
TL;DR: A large-scale genetic association study of intelligence identifies 190 new loci and implicates 939 new genes related to neurogenesis, neuron differentiation and synaptic structure, a major step forward in understanding the neurobiology of cognitive function as well as genetically related neurological and psychiatric disorders.
Abstract: Intelligence is highly heritable1 and a major determinant of human health and well-being2. Recent genome-wide meta-analyses have identified 24 genomic loci linked to variation in intelligence3-7, but much about its genetic underpinnings remains to be discovered. Here, we present a large-scale genetic association study of intelligence (n = 269,867), identifying 205 associated genomic loci (190 new) and 1,016 genes (939 new) via positional mapping, expression quantitative trait locus (eQTL) mapping, chromatin interaction mapping, and gene-based association analysis. We find enrichment of genetic effects in conserved and coding regions and associations with 146 nonsynonymous exonic variants. Associated genes are strongly expressed in the brain, specifically in striatal medium spiny neurons and hippocampal pyramidal neurons. Gene set analyses implicate pathways related to nervous system development and synaptic structure. We confirm previous strong genetic correlations with multiple health-related outcomes, and Mendelian randomization analysis results suggest protective effects of intelligence for Alzheimer's disease and ADHD and bidirectional causation with pleiotropic effects for schizophrenia. These results are a major step forward in understanding the neurobiology of cognitive function as well as genetically related neurological and psychiatric disorders.

800 citations

Journal ArticleDOI
TL;DR: In this paper, the authors conducted genome-wide association studies of three phenotypes: subjective well-being (n = 298,420), depressive symptoms (n= 161,460), and neuroticism(n = 170,911).
Abstract: Very few genetic variants have been associated with depression and neuroticism, likely because of limitations on sample size in previous studies. Subjective well-being, a phenotype that is genetically correlated with both of these traits, has not yet been studied with genome-wide data. We conducted genome-wide association studies of three phenotypes: subjective well-being (n = 298,420), depressive symptoms (n = 161,460), and neuroticism (n = 170,911). We identify 3 variants associated with subjective well-being, 2 variants associated with depressive symptoms, and 11 variants associated with neuroticism, including 2 inversion polymorphisms. The two loci associated with depressive symptoms replicate in an independent depression sample. Joint analyses that exploit the high genetic correlations between the phenotypes (|ρ^| ≈ 0.8) strengthen the overall credibility of the findings and allow us to identify additional variants. Across our phenotypes, loci regulating expression in central nervous system and adrenal or pancreas tissues are strongly enriched for association.

796 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations