scispace - formally typeset
Search or ask a question
Author

John M. Wallace

Bio: John M. Wallace is an academic researcher from University of Washington. The author has contributed to research in topics: Northern Hemisphere & Sea surface temperature. The author has an hindex of 90, co-authored 229 publications receiving 50896 citations. Previous affiliations of John M. Wallace include Joint Institute for the Study of the Atmosphere and Ocean & National Center for Atmospheric Research.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors identify a robust, recurring pattern of ocean-atmosphere climate variability centered over the midlatitude North Pacific basin over the past century, the amplitude of this climate pattern has varied irregularly at interannual-to-interdecadal timescales.
Abstract: Evidence gleaned from the instrumental record of climate data identifies a robust, recurring pattern of ocean–atmosphere climate variability centered over the midlatitude North Pacific basin. Over the past century, the amplitude of this climate pattern has varied irregularly at interannual-to-interdecadal timescales. There is evidence of reversals in the prevailing polarity of the oscillation occurring around 1925, 1947, and 1977; the last two reversals correspond to dramatic shifts in salmon production regimes in the North Pacific Ocean. This climate pattern also affects coastal sea and continental surface air temperatures, as well as streamflow in major west coast river systems, from Alaska to California.

6,719 citations

Journal ArticleDOI
TL;DR: The Arctic Oscillation (AO) as mentioned in this paper is the signature of modulations in the strength of the polar vortex aloft, and it resembles the NAO in many respects; but its primary center of action covers more of the Arctic, giving it a more zonally symmetric appearance.
Abstract: The leading empirical orthogonal function of the wintertime sea-level pressure field is more strongly coupled to surface air temperature fluctuations over the Eurasian continent than the North Atlantic Oscillation (NAO). It resembles the NAO in many respects; but its primary center of action covers more of the Arctic, giving it a more zonally symmetric appearance. Coupled to strong fluctuations at the 50-hPa level on the intraseasonal, interannual, and interdecadal time scales, this "Arctic Oscillation" (AO)can be interpreted as the surface signature of modulations in the strength of the polar vortex aloft. It is proposed that the zonally asymmetric surface air temperature and mid-tropospheric circulation anomalies observed in association with the AO may be secondary baroclinic features induced by the land-sea contrasts. The same modal structure is mirrored in the pronounced trends in winter and springtime surface air temperature, sea-level pressure, and 50-hPa height over the past 30 years: parts of Eurasia have warmed by as much as several K, sea-level pressure over parts of the Arctic has fallen by 4 hPa, and the core of the lower stratospheric polar vortex has cooled by several K. These trends can be interpreted as the development of a systematic bias in one of the atmosphere's dominant, naturally occurring modes of variability.

3,800 citations

Journal ArticleDOI
TL;DR: In this paper, a review of existing literature on the subject reveals the existence of at least four such patterns: the North Atlantic and North Pacific Oscillations identified by Walker and Bliss (1932), a zonally symmetric seesaw between sea level pressures in polar and temperature latitudes, first noted by Lorenz (1951), and what we will refer to as the Pacific/North American pattern, which has been known to operational long-range forecasters in this country since the 1950's.
Abstract: Contemporaneous correlations between geopotential heights on a given pressure surface at widely separated points on earth, referred to as teleconnections in this paper, are studied in an attempt to identify and document recurrent spatial patterns which might be indicative of standing oscillations in the planetary waves during the Northern Hemisphere winter, with time scales on the order of a month or longer. A review of existing literature on the subject reveals the existence of at least four such patterns: the North Atlantic and North Pacific Oscillations identified by Walker and Bliss (1932). a zonally symmetric seesaw between sea level pressures in polar and temperature latitudes, first noted by Lorenz (1951), and what we will refer to as the Pacific/North American pattern, which has been known to operational long-range forecasters in this country since the 1950's. A data set consisting of NMC monthly mean sea level pressure and 500 mb height analyses for a 15-year period is used as a basis fo...

3,781 citations

Journal ArticleDOI
TL;DR: In this article, the authors compared the structure and seasonality of the Southern Hemisphere (SH) annular mode and the Northern Hemisphere (NH) mode, referred to as the Arctic Oscillation (AO), based on data from the National Centers for Environmental Prediction and National Center for Atmospheric Research reanalysis and supplementary datasets.
Abstract: The leading modes of variability of the extratropical circulation in both hemispheres are characterized by deep, zonally symmetric or ‘‘annular’’ structures, with geopotential height perturbations of opposing signs in the polar cap region and in the surrounding zonal ring centered near 458 latitude. The structure and dynamics of the Southern Hemisphere (SH) annular mode have been extensively documented, whereas the existence of a Northern Hemisphere (NH) mode, herein referred to as the Arctic Oscillation (AO), has only recently been recognized. Like the SH mode, the AO can be defined as the leading empirical orthogonal function of the sea level pressure field or of the zonally symmetric geopotential height or zonal wind fields. In this paper the structure and seasonality of the NH and SH modes are compared based on data from the National Centers for Environmental Prediction‐National Center for Atmospheric Research reanalysis and supplementary datasets. The structures of the NH and SH annular modes are shown to be remarkably similar, not only in the zonally averaged geopotential height and zonal wind fields, but in the mean meridional circulations as well. Both exist year-round in the troposphere, but they amplify with height upward into the stratosphere during those seasons in which the strength of the zonal flow is conducive to strong planetary wave‐mean flow interaction: midwinter in the NH and late spring in the SH. During these ‘‘active seasons,’’ the annular modes modulate the strength of the Lagrangian mean circulation in the lower stratosphere, total column ozone and tropopause height over mid- and high latitudes, and the strength of the trade winds of their respective hemispheres. The NH mode also contains an embedded planetary wave signature with expressions in surface air temperature, precipitation, total column ozone, and tropopause height. It is argued that the horizontal temperature advection by the perturbed zonal-mean zonal wind field in the lower troposphere is instrumental in forcing this pattern. A companion paper documents the striking resemblance between the structure of the annular modes and observed climate trends over the past few decades.

3,278 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compare the structure of the interannual variability associated with the ENSO cycle and documents its time history back to 1900, using the leading EOFs of the SST anomaly and anomaly deviation fields in various domains and the associated expansion coefficient (or principal component) time series, which are used to construct global regression maps of SST, sea level pressure (SLP), and a number of related variables.
Abstract: A number of recent studies have reported an ENSO-like EOF mode in the global sea surface temperature (SST) field, whose time variability is marked by an abrupt change toward a warmer tropical eastern Pacific and a colder extratropical central North Pacific in 1976‐77. The present study compares this pattern with the structure of the interannual variability associated with the ENSO cycle and documents its time history back to 1900. The analysis is primarily based on the leading EOFs of the SST anomaly and ‘‘anomaly deviation’’ fields in various domains and the associated expansion coefficient (or principal component) time series, which are used to construct global regression maps of SST, sea level pressure (SLP), and a number of related variables. The use of ‘‘anomaly deviations’’ (i.e., departures of local SST anomalies from the concurrent global-mean SST anomaly) reduces the influence of global-mean SST trends upon the structure of the EOFs and their expansion coefficient time series. An important auxiliary time series used in this study is a ‘‘Southern Oscillation index’’ based on marine surface observations. By means of several different analysis techniques, the time variability of the leading EOF of the global SST field is separated into two components: one identified with the ‘‘ENSO cycle-related’’ variability on the interannual timescale, and the other a linearly independent ‘‘residual’’ comprising all the interdecadal variability in the record. The two components exhibit rather similar spatial signatures in the global SST, SLP, and wind stress fields. The SST signature in the residual variability is less equatorially confined in the eastern Pacific and it is relatively more prominent over the extratropical North Pacific. The corresponding SLP signature is also stronger over the extratropical North Pacific, and its counterpart in the cold season 500-mb height field more closely resembles the PNA pattern. The amplitude time series of the ENSO-like pattern in the residual variability reflects the above-mentioned shift in 1976‐77, as well as a number of other prominent features, including a shift of opposite polarity during the 1940s.

2,409 citations


Cited by
More filters
01 Jan 2007
TL;DR: Drafting Authors: Neil Adger, Pramod Aggarwal, Shardul Agrawala, Joseph Alcamo, Abdelkader Allali, Oleg Anisimov, Nigel Arnell, Michel Boko, Osvaldo Canziani, Timothy Carter, Gino Casassa, Ulisses Confalonieri, Rex Victor Cruz, Edmundo de Alba Alcaraz, William Easterling, Christopher Field, Andreas Fischlin, Blair Fitzharris.
Abstract: Drafting Authors: Neil Adger, Pramod Aggarwal, Shardul Agrawala, Joseph Alcamo, Abdelkader Allali, Oleg Anisimov, Nigel Arnell, Michel Boko, Osvaldo Canziani, Timothy Carter, Gino Casassa, Ulisses Confalonieri, Rex Victor Cruz, Edmundo de Alba Alcaraz, William Easterling, Christopher Field, Andreas Fischlin, Blair Fitzharris, Carlos Gay García, Clair Hanson, Hideo Harasawa, Kevin Hennessy, Saleemul Huq, Roger Jones, Lucka Kajfež Bogataj, David Karoly, Richard Klein, Zbigniew Kundzewicz, Murari Lal, Rodel Lasco, Geoff Love, Xianfu Lu, Graciela Magrín, Luis José Mata, Roger McLean, Bettina Menne, Guy Midgley, Nobuo Mimura, Monirul Qader Mirza, José Moreno, Linda Mortsch, Isabelle Niang-Diop, Robert Nicholls, Béla Nováky, Leonard Nurse, Anthony Nyong, Michael Oppenheimer, Jean Palutikof, Martin Parry, Anand Patwardhan, Patricia Romero Lankao, Cynthia Rosenzweig, Stephen Schneider, Serguei Semenov, Joel Smith, John Stone, Jean-Pascal van Ypersele, David Vaughan, Coleen Vogel, Thomas Wilbanks, Poh Poh Wong, Shaohong Wu, Gary Yohe

7,720 citations

Journal ArticleDOI
TL;DR: Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change.
Abstract: Ecological changes in the phenology and distribution of plants and animals are occurring in all well-studied marine, freshwater, and terrestrial groups These observed changes are heavily biased in the directions predicted from global warming and have been linked to local or regional climate change through correlations between climate and biological variation, field and laboratory experiments, and physiological research Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change Tropical coral reefs and amphibians have been most negatively affected Predator-prey and plant-insect interactions have been disrupted when interacting species have responded differently to warming Evolutionary adaptations to warmer conditions have occurred in the interiors of species’ ranges, and resource use and dispersal have evolved rapidly at expanding range margins Observed genetic shifts modulate local effects of climate change, but there is little evidence that they will mitigate negative effects at the species level

7,657 citations

Journal ArticleDOI
04 Aug 1995-Science
TL;DR: An evaluation of the atmospheric moisture budget reveals coherent large-scale changes since 1980 that are linked to recent dry conditions over southern Europe and the Mediterranean, whereas northern Europe and parts of Scandinavia have generally experienced wetter than normal conditions.
Abstract: Greenland ice-core data have revealed large decadal climate variations over the North Atlantic that can be related to a major source of low-frequency variability, the North Atlantic Oscillation. Over the past decade, the Oscillation has remained in one extreme phase during the winters, contributing significantly to the recent wintertime warmth across Europe and to cold conditions in the northwest Atlantic. An evaluation of the atmospheric moisture budget reveals coherent large-scale changes since 1980 that are linked to recent dry conditions over southern Europe and the Mediterranean, whereas northern Europe and parts of Scandinavia have generally experienced wetter than normal conditions.

7,593 citations

Journal ArticleDOI
TL;DR: In this article, the authors identify a robust, recurring pattern of ocean-atmosphere climate variability centered over the midlatitude North Pacific basin over the past century, the amplitude of this climate pattern has varied irregularly at interannual-to-interdecadal timescales.
Abstract: Evidence gleaned from the instrumental record of climate data identifies a robust, recurring pattern of ocean–atmosphere climate variability centered over the midlatitude North Pacific basin. Over the past century, the amplitude of this climate pattern has varied irregularly at interannual-to-interdecadal timescales. There is evidence of reversals in the prevailing polarity of the oscillation occurring around 1925, 1947, and 1977; the last two reversals correspond to dramatic shifts in salmon production regimes in the North Pacific Ocean. This climate pattern also affects coastal sea and continental surface air temperatures, as well as streamflow in major west coast river systems, from Alaska to California.

6,719 citations

Journal ArticleDOI
TL;DR: The effect of the added white noise is to provide a uniform reference frame in the time–frequency space; therefore, the added noise collates the portion of the signal of comparable scale in one IMF.
Abstract: A new Ensemble Empirical Mode Decomposition (EEMD) is presented. This new approach consists of sifting an ensemble of white noise-added signal (data) and treats the mean as the final true result. Finite, not infinitesimal, amplitude white noise is necessary to force the ensemble to exhaust all possible solutions in the sifting process, thus making the different scale signals to collate in the proper intrinsic mode functions (IMF) dictated by the dyadic filter banks. As EEMD is a time–space analysis method, the added white noise is averaged out with sufficient number of trials; the only persistent part that survives the averaging process is the component of the signal (original data), which is then treated as the true and more physical meaningful answer. The effect of the added white noise is to provide a uniform reference frame in the time–frequency space; therefore, the added noise collates the portion of the signal of comparable scale in one IMF. With this ensemble mean, one can separate scales naturall...

6,437 citations