scispace - formally typeset
Search or ask a question
Author

John Melngailis

Bio: John Melngailis is an academic researcher from University of Maryland, College Park. The author has contributed to research in topics: Focused ion beam & Ion beam. The author has an hindex of 36, co-authored 133 publications receiving 4969 citations. Previous affiliations of John Melngailis include University of Kassel & Massachusetts Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of the state of the art and level of understanding of direct ion and electron beam fabrication and point out some of the unsolved problems can be found in this article, where the authors also discuss structures that are made for research purposes or for demonstration of the processing capabilities.
Abstract: Beams of electrons and ions are now fairly routinely focused to dimensions in the nanometer range. Since the beams can be used to locally alter material at the point where they are incident on a surface, they represent direct nanofabrication tools. The authors will focus here on direct fabrication rather than lithography, which is indirect in that it uses the intermediary of resist. In the case of both ions and electrons, material addition or removal can be achieved using precursor gases. In addition ions can also alter material by sputtering (milling), by damage, or by implantation. Many material removal and deposition processes employing precursor gases have been developed for numerous practical applications, such as mask repair, circuit restructuring and repair, and sample sectioning. The authors will also discuss structures that are made for research purposes or for demonstration of the processing capabilities. In many cases the minimum dimensions at which these processes can be realized are considerably larger than the beam diameters. The atomic level mechanisms responsible for the precursor gas activation have not been studied in detail in many cases. The authors will review the state of the art and level of understanding of direct ion and electron beam fabrication and point out some of the unsolved problems.

941 citations

Journal ArticleDOI
TL;DR: The focused ion beam field has been spurred by the invention of the liquid metal ion source and by the utilization of focusing columns with mass separation capability, which has led to the use of alloy ion sources making available a large menu of ion species, in particular the dopants of Si and GaAs as discussed by the authors.
Abstract: Ions of kiloelectron volt energies incident on a solid surface produce a number of effects: several atoms are sputtered off, several electrons are emitted, chemical reactions may be induced, atoms are displaced from their equilibrium positions, and ions implant themselves in the solid, altering its properties. Some of these effects, such as sputtering and implantation are widely used in semiconductor device fabrication and in other fields. Thus the capability to focus a beam of ions to submicrometer dimensions, i.e., dimensions compatible with the most demanding fabrication procedures, is an important development. The focused ion beam field has been spurred by the invention of the liquid metal ion source and by the utilization of focusing columns with mass separation capability. This has led to the use of alloy ion sources making available a large menu of ion species, in particular the dopants of Si and GaAs. The ability to sputter and to also induce deposition by causing breakdown of an adsorbed film has produced an immediate application of focused ion beams to photomask repair. The total number of focused ion beamfabrication systems in use worldwide is about 35, about 25 of them in Japan. In addition, there are many more simpler focused ion beam columns for specialized uses. The interest is growing rapidly. The following range of specifications of these systems has been reported: accelerating potential 3 to 200 kV, ion current density in focal spot up to 10 A/cm2, beam diameters from 0.05 to 1 μm, deflection accuracy of the beam over the surface ±0.1 μm, and ion species available Ga, Au, Si, Be, B, As, P, etc. Some of the applications which have been demonstrated or suggested include: mask repair, lithography (to replace electron beamlithography), direct, patterned, implantationdoping of semiconductors, ion induced deposition for circuit repair or rewiring, scanning ion microscopy, and scanning ion mass spectroscopy.

559 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the current status and future trends in ion implantation of Si at low and high energies with particular emphasis on areas where recent advances have been made and where further understanding is needed.
Abstract: General trends in integrated circuit technology toward smaller device dimensions, lower thermal budgets, and simplified processing steps present severe physical and engineering challenges to ion implantation. These challenges, together with the need for physically based models at exceedingly small dimensions, are leading to a new level of understanding of fundamental defect science in Si. In this article, we review the current status and future trends in ion implantation of Si at low and high energies with particular emphasis on areas where recent advances have been made and where further understanding is needed. Particularly interesting are the emerging approaches to defect and dopant distribution modeling, transient enhanced diffusion, high energy implantation and defect accumulation, and metal impurity gettering. Developments in the use of ion beams for analysis indicate much progress has been made in one-dimensional analysis, but that severe challenges for two-dimensional characterization remain. The ...

266 citations

Journal ArticleDOI
TL;DR: In this article, focused ion beam induced deposition of platinum from a precursor gas of (methylcyclopentadienyl)trimethyl platinum has been demonstrated, and the resistivity and composition of the film and the deposition yield have been measured as a function of ion current density, line dose, substrate temperature, geometry, and supplemental hydrogen pressure.
Abstract: Focused ion beam induced deposition of platinum from a precursor gas of (methylcyclopentadienyl)trimethyl platinum has been demonstrated. This organometallic compound is solid at room temperature with a vapor pressure of 0.054 Torr. Ga+ ions at 30–40 keV have been used. The resistivity and composition of the film and the deposition yield have been measured as a function of ion current density, line dose, substrate temperature, geometry, and supplemental hydrogen pressure. Yield varies from 0.2 to 34, and resistivity varies from 70 to 700 μΩ cm depending on the conditions. The resistivity and content of the carbon impurity are reduced as the ion current increases: the lowest resistivity is observed at the highest current density corresponding to 0.222 nA at scan speed 500 cm/s repeated over a 350 μm long line. The minimum linewidth achieved so far is 0.3 μm. Transmission electron microscopy shows the Pt film to be amorphous, and Auger analysis gives the film composition 46% Pt, 24% C, 28% Ga, and 2% O. The...

182 citations

Journal ArticleDOI
TL;DR: Direct observation of controlled and reversible switching of magnetic domains using static (dc) electric fields applied in situ during Lorentz microscopy is reported, and an electric-field-dependent uniaxial anisotropy is proposed as a possible mechanism to control the coercive field during operation of an integrated magnetoelectric memory node.
Abstract: We report direct observation of controlled and reversible switching of magnetic domains using static (dc) electric fields applied in situ during Lorentz microscopy. The switching is realized through electromechanical coupling in thin film Fe0.7Ga0.3/BaTiO3 bilayer structures mechanically released from the growth substrate. The domain wall motion is observed dynamically, allowing the direct association of local magnetic ordering throughout a range of applied electric fields. During application of ∼7-11 MV/m electric fields to the piezoelectric BaTiO3 film, local magnetic domains rearrange in the ferromagnetic Fe0.7Ga0.3 layer due to the transfer of strain from the BaTiO3 film. A simulation based on micromagnetic modeling shows a magnetostrictive anisotropy of 25 kPa induced in the Fe0.7Ga0.3 due to the strain. This electric-field-dependent uniaxial anisotropy is proposed as a possible mechanism to control the coercive field during operation of an integrated magnetoelectric memory node.

179 citations


Cited by
More filters
Journal ArticleDOI
08 May 2009-Science
TL;DR: An n-type graphene field-effect transistor that operates at room temperature is fabricated and confirmed the carbon-nitrogen species in graphene thermally annealed in ammonia is covalently functionalized by nitrogen species.
Abstract: Graphene is readily p-doped by adsorbates, but for device applications, it would be useful to access the n-doped material. Individual graphene nanoribbons were covalently functionalized by nitrogen species through high-power electrical joule heating in ammonia gas, leading to n-type electronic doping consistent with theory. The formation of the carbon-nitrogen bond should occur mostly at the edges of graphene where chemical reactivity is high. X-ray photoelectron spectroscopy and nanometer-scale secondary ion mass spectroscopy confirm the carbon-nitrogen species in graphene thermally annealed in ammonia. We fabricated an n-type graphene field-effect transistor that operates at room temperature.

2,006 citations

Journal ArticleDOI
TL;DR: A review of the development of random-matrix theory (RMT) during the last fifteen years is given in this paper, with a brief historical survey of the developments of RMT and of localization theory since their inception.

1,750 citations

Journal ArticleDOI
TL;DR: This Review tries to summarize what remarkable progress in multiferroic magnetoelectric composite systems has been achieved in most recent few years, with emphasis on thin films; and to describe unsolved issues and new device applications which can be controlled both electrically and magnetically.
Abstract: Multiferroic magnetoelectric composite systems such as ferromagnetic-ferroelectric heterostructures have recently attracted an ever-increasing interest and provoked a great number of research activities, driven by profound physics from coupling between ferroelectric and magnetic orders, as well as potential applications in novel multifunctional devices, such as sensors, transducers, memories, and spintronics. In this Review, we try to summarize what remarkable progress in multiferroic magnetoelectric composite systems has been achieved in most recent few years, with emphasis on thin films; and to describe unsolved issues and new device applications which can be controlled both electrically and magnetically.

1,642 citations

Journal ArticleDOI
TL;DR: It is suggested that the current development of random-matrix theory signals the emergence of a new “statistical mechanics”: Stochasticity and general symmetry requirements lead to universal laws not based on dynamical principles.
Abstract: We review the development of random-matrix theory (RMT) during the last decade. We emphasize both the theoretical aspects, and the application of the theory to a number of fields. These comprise chaotic and disordered systems, the localization problem, many-body quantum systems, the Calogero-Sutherland model, chiral symmetry breaking in QCD, and quantum gravity in two dimensions. The review is preceded by a brief historical survey of the developments of RMT and of localization theory since their inception. We emphasize the concepts common to the above-mentioned fields as well as the great diversity of RMT. In view of the universality of RMT, we suggest that the current development signals the emergence of a new "statistical mechanics": Stochasticity and general symmetry requirements lead to universal laws not based on dynamical principles.

1,561 citations