scispace - formally typeset
J

John P. Perdew

Researcher at Temple University

Publications -  424
Citations -  307912

John P. Perdew is an academic researcher from Temple University. The author has contributed to research in topics: Density functional theory & Local-density approximation. The author has an hindex of 104, co-authored 410 publications receiving 262613 citations. Previous affiliations of John P. Perdew include Pierre-and-Marie-Curie University & University College Dublin.

Papers
More filters
Journal ArticleDOI

Generalized Gradient Approximation Made Simple

TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Journal ArticleDOI

Accurate and simple analytic representation of the electron-gas correlation energy

TL;DR: A simple analytic representation of the correlation energy for a uniform electron gas, as a function of density parameter and relative spin polarization \ensuremath{\zeta}, which confirms the practical accuracy of the VWN and PZ representations and eliminates some minor problems.
Journal ArticleDOI

Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation.

TL;DR: A way is found to visualize and understand the nonlocality of exchange and correlation, its origins, and its physical effects as well as significant interconfigurational and interterm errors remain.
Journal ArticleDOI

Density-functional approximation for the correlation energy of the inhomogeneous electron gas

TL;DR: Numerical results for atoms, positive ions, and surfaces are close to the exact correlation energies, with major improvements over the original LM approximation for the ions and surfaces.
Journal ArticleDOI

Self-interaction correction to density-functional approximations for many-electron systems

TL;DR: In this paper, the self-interaction correction (SIC) of any density functional for the ground-state energy is discussed. But the exact density functional is strictly selfinteraction-free (i.e., orbitals demonstrably do not selfinteract), but many approximations to it, including the local spin-density (LSD) approximation for exchange and correlation, are not.