scispace - formally typeset
Search or ask a question

Showing papers by "John Q. Trojanowski published in 2008"


Journal ArticleDOI
TL;DR: New criteria for diagnosis of multiple system atrophy have simplified the previous criteria, have incorporated current knowledge, and are expected to enhance future assessments of the disease.
Abstract: Background: A consensus conference on multiple system atrophy (MSA) in 1998 established criteria for diagnosis that have been accepted widely. Since then, clinical, laboratory, neuropathologic, and imaging studies have advanced the field, requiring a fresh evaluation of diagnostic criteria. We held a second consensus conference in 2007 and present the results here.Methods: Experts in the clinical, neuropathologic, and imaging aspects of MSA were invited to participate in a 2-day consensus conference. Participants were divided into five groups, consisting of specialists in the parkinsonian, cerebellar, autonomic, neuropathologic, and imaging aspects of the disorder. Each group independently wrote diagnostic criteria for its area of expertise in advance of the meeting. These criteria were discussed and reconciled during the meeting using consensus methodology.Results: The new criteria retain the diagnostic categories of MSA with predominant parkinsonism and MSA with predominant cerebellar ataxia to designate the predominant motor features and also retain the designations of definite, probable, and possible MSA. Definite MSA requires neuropathologic demonstration of CNS alpha-synuclein-positive glial cytoplasmic inclusions with neurodegenerative changes in striatonigral or olivopontocerebellar structures. Probable MSA requires a sporadic, progressive adult-onset disorder including rigorously defined autonomic failure and poorly levodopa-responsive parkinsonism or cerebellar ataxia. Possible MSA requires a sporadic, progressive adult-onset disease including parkinsonism or cerebellar ataxia and at least one feature suggesting autonomic dysfunction plus one other feature that may be a clinical or a neuroimaging abnormality.Conclusions: These new criteria have simplified the previous criteria, have incorporated current knowledge, and are expected to enhance future assessments of the disease.

2,491 citations



Journal ArticleDOI
TL;DR: The finding of pathogenic mutations in TARDBP implicates TDP-43 as an active mediator of neurodegeneration in TDP -43 proteinopathies, a class of disorder that includes ALS and FTLD-U.
Abstract: Summary Background TDP-43 is a major component of the ubiquitinated inclusions that characterise amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitin inclusions (FTLD-U). TDP-43 is an RNA-binding and DNA-binding protein that has many functions and is encoded by the TAR DNA-binding protein gene ( TARDBP ) on chromosome 1. Our aim was to investigate whether TARDBP is a candidate disease gene for familial ALS that is not associated with mutations in superoxide dismutase 1 ( SOD1 ). Methods TARDBP was sequenced in 259 patients with ALS, FTLD, or both. We used TaqMan-based SNP genotyping to screen for the identified variants in control groups matched to two kindreds of patients for age and ethnic origin. Additional clinical, genetic, and pathological assessments were made in these two families. Findings We identified two variants in TARDBP , which would encode Gly290Ala and Gly298Ser forms of TDP-43, in two kindreds with familial ALS. The variants seem to be pathogenic because they co-segregated with disease in both families, were absent in controls, and were associated with TDP-43 neuropathology in both members of one of these families for whom CNS tissue was available. Interpretation The Gly290Ala and Gly298Ser mutations are located in the glycine-rich domain of TDP-43, which regulates gene expression and mediates protein–protein interactions such as those with heterogeneous ribonucleoproteins. Owing to the varied and important cellular functions of TDP-43, these mutations might cause neurodegeneration through both gains and losses of function. The finding of pathogenic mutations in TARDBP implicates TDP-43 as an active mediator of neurodegeneration in TDP-43 proteinopathies, a class of disorder that includes ALS and FTLD-U. Funding National Institutes of Health (AG10124, AG17586, AG005136-22, PO1 AG14382), Department of Veterans Affairs, Friedrich-Baur Stiftung (0017/2007), US Public Health Service, ALS Association, and Fundacio ‘la Caixa'.

693 citations


Journal ArticleDOI
21 May 2008-Brain
TL;DR: The demonstration of considerable hippocampal loss in mild cognitive impairment and Alzheimer's disease patients over only 6 months and accelerated loss over 12 months illustrates the power of MRI to track morphological brain changes over time in a large multisite setting.
Abstract: Hippocampal volume change over time, measured with MRI, has huge potential as a marker for Alzheimer's disease. The objectives of this study were: (i) to test if constant and accelerated hippocampal loss can be detected in Alzheimer's disease, mild cognitive impairment and normal ageing over short periods, e.g. 6–12 months, with MRI in the large multicentre setting of the Alzheimer's Disease Neuroimaging Initiative (ADNI); (ii) to determine the extent to which the polymorphism of the apolipoprotein E (ApoE) gene modulates hippocampal change; and (iii) to determine if rates of hippocampal loss correlate with cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease, such as the β-amyloid (Aβ1–42) and tau proteins (tau). The MRI multicentre study included 112 cognitive normal elderly individuals, 226 mild cognitive impairment and 96 Alzheimer's disease patients who all had at least three successive MRI scans, involving 47 different imaging centres. The mild cognitive impairment and Alzheimer's disease groups showed hippocampal volume loss over 6 months and accelerated loss over 1 year. Moreover, increased rates of hippocampal loss were associated with presence of the ApoE allele ɛ4 gene in Alzheimer's disease and lower CSF Aβ1–42 in mild cognitive impairment, irrespective of ApoE genotype, whereas relations with tau were only trends. The power to measure hippocampal change was improved by exploiting correlations statistically between successive MRI observations. The demonstration of considerable hippocampal loss in mild cognitive impairment and Alzheimer's disease patients over only 6 months and accelerated loss over 12 months illustrates the power of MRI to track morphological brain changes over time in a large multisite setting. Furthermore, the relations between faster hippocampal loss in the presence of ApoE allele ɛ4 and decreased CSF Aβ1–42 supports the concept that increased hippocampal loss is an indicator of Alzheimer's disease pathology and a potential marker for the efficacy of therapeutic interventions in Alzheimer's disease.

570 citations


Journal ArticleDOI
TL;DR: FTLD-U/ALS pathogenesis may be linked mechanistically to deleterious perturbations of nuclear trafficking and solubility of TDP-43, as well as to mutants with defective nuclear localization or nuclear export signals.

528 citations


Journal ArticleDOI
TL;DR: Clear gender differences in brain aging were evident, suggesting that the brain undergoes sexually dimorphic changes in gene expression not only in development but also in later life, and that this balance is set differently in males and females.
Abstract: Gene expression profiles were assessed in the hippocampus, entorhinal cortex, superior-frontal gyrus, and postcentral gyrus across the lifespan of 55 cognitively intact individuals aged 20–99 years. Perspectives on global gene changes that are associated with brain aging emerged, revealing two overarching concepts. First, different regions of the forebrain exhibited substantially different gene profile changes with age. For example, comparing equally powered groups, 5,029 probe sets were significantly altered with age in the superior-frontal gyrus, compared with 1,110 in the entorhinal cortex. Prominent change occurred in the sixth to seventh decades across cortical regions, suggesting that this period is a critical transition point in brain aging, particularly in males. Second, clear gender differences in brain aging were evident, suggesting that the brain undergoes sexually dimorphic changes in gene expression not only in development but also in later life. Globally across all brain regions, males showed more gene change than females. Further, Gene Ontology analysis revealed that different categories of genes were predominantly affected in males vs. females. Notably, the male brain was characterized by global decreased catabolic and anabolic capacity with aging, with down-regulated genes heavily enriched in energy production and protein synthesis/transport categories. Increased immune activation was a prominent feature of aging in both sexes, with proportionally greater activation in the female brain. These data open opportunities to explore age-dependent changes in gene expression that set the balance between neurodegeneration and compensatory mechanisms in the brain and suggest that this balance is set differently in males and females, an intriguing idea.

512 citations


Journal ArticleDOI
TL;DR: Postmortem analysis of five subjects with Parkinson's disease 9–14 years after transplantation of fetal midbrain cell suspensions revealed surviving grafts that included dopamine and serotonin neurons without pathology.
Abstract: Postmortem analysis of five subjects with Parkinson's disease 9-14 years after transplantation of fetal midbrain cell suspensions revealed surviving grafts that included dopamine and serotonin neurons without pathology. These findings are important for the understanding of the etiopathogenesis of midbrain dopamine neuron degeneration and future use of cell replacement therapies.

413 citations


Journal ArticleDOI
TL;DR: Understanding of the role of neuroinflammation and abnormal SYN in the pathogenesis of PD is advanced and new avenues for the discovery of more effective therapies for PD are opened.
Abstract: α-Synuclein (SYN) is the major component of Lewy bodies, the neuropathological hallmarks of Parkinson's disease (PD). Missense mutations and multiplications of the SYN gene cause autosomal dominant inherited PD. Thus, SYN is implicated in the pathogenesis of PD. However, the mechanism whereby SYN promotes neurodegeneration remains unclear. Familial PD with SYN gene mutations are rare because the majority of PD is sporadic and emerging evidence indicates that sporadic PD may result from genetic and environmental risk factors including neuroinflammation. Hence, we examined the relationship between SYN dysfunction and neuroinflammation in mediating dopaminergic neurodegeneration in mice and dopaminergic neuronal cultures derived from wild-type SYN and mutant A53T SYN transgenic mice in a murine SYN-null (SYNKO) background (M7KO and M83KO, respectively). Stereotaxic injection of an inflammagen, lipopolysaccharide, into substantia nigra of these SYN genetically engineered mice induced similar inflammatory reactions. In M7KO and M83KO, but not in SYNKO mice, the neuroinflammation was associated with dopaminergic neuronal death and the accumulation of insoluble aggregated SYN as cytoplasmic inclusions in nigral neurons. Nitrated/oxidized SYN was detected in these inclusions and abatement of microglia-derived nitric oxide and superoxide provided significant neuroprotection in neuron–glia cultures from M7KO mice. These data suggest that nitric oxide and superoxide released by activated microglia may be mediators that link inflammation and abnormal SYN in mechanisms of PD neurodegeneration. This study advances understanding of the role of neuroinflammation and abnormal SYN in the pathogenesis of PD and opens new avenues for the discovery of more effective therapies for PD.

379 citations


Journal ArticleDOI
TL;DR: Findings provide further insight into the burden and clinical significance of TDP-43 pathology in disorders other than FTLD-U and amyotrophic lateral sclerosis.
Abstract: Pathologic TAR-DNA-binding protein 43 (TDP-43) is a disease protein in frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) and amyotrophic lateral sclerosis. We studied the presence, frequency, and distribution of TDP-43 pathology by immunohistochemistry and biochemistry in a series of clinically well-characterized tauopathy patient brains, including 182 Alzheimer disease (AD), 39 corticobasal degeneration, 77 progressive supranuclear palsy, and 12 Pick disease cases and investigated the clinical impact of concomitant TDP-43 pathology in these cases. TAR-DNA-binding protein 43 pathology was found in 25.8% of AD cases. It was restricted to the dentate gyrus and entorhinal cortex in approximately 75% of cases; approximately 25% showed more widespread TDP-43 pathology in frontal and temporal cortices, resembling the FTLD-U subtype associated with progranulin mutations. TAR-DNA-binding protein 43 pathology in AD was associated with significantly longer disease duration, but there was no association with the clinical presentation (148 cases diagnosed as AD and 34 cases diagnosed as frontotemporal lobar degeneration). Progressive supranuclear palsy and Pick disease cases showed no TDP-43 inclusions and no biochemical alterations of TDP-43. There was, however, a unique, predominantly glial TDP-43 pathology with staining of astrocytic plaque-like structures and coiled bodies in 15.4% of corticobasal degeneration cases; this was associated with biochemical TDP-43 changes similar to those in FTLD-U. These findings provide further insight into the burden and clinical significance of TDP-43 pathology in disorders other than FTLD-U and amyotrophic lateral sclerosis.

343 citations


Journal ArticleDOI
TL;DR: The results show that the composition of the inclusions in brain versus spinal cord tissues differ, with an increased representation of C-t TDP-43 fragments in cortical and hippocampal regions, and regionally different pathogenic processes may underlie the development of abnormal T DP-43 proteinopathies.
Abstract: TAR DNA-binding protein (TDP-43) has been recently described as a major pathological protein in both frontotemporal dementia with ubiquitin-positive inclusions (FTLD-U) and amyotrophic lateral sclerosis. However, little is known about the relative abundance and distribution of different pathological TDP-43 species, which include hyperphosphorylated, ubiquitinated, and N-terminally cleaved TDP-43. Here, we developed novel N-terminal (N-t) and C-terminal (C-t)-specific TDP-43 antibodies and performed biochemical and immunohistochemical studies to analyze cortical, hippocampal, and spinal cord tissue from frontotemporal dementia with ubiquitin-positive inclusions and amyotrophic lateral sclerosis cases. C-t-specific TDP-43 antibodies revealed similar abundance, morphology, and distribution of dystrophic neurites and neuronal cytoplasmic inclusions in cortex and hippocampus compared with previously described pan-TDP-43 antibodies. By contrast, N-t-specific TDP-43 antibodies only detected a small subset of these lesions. Biochemical studies confirmed the presence of C-t TDP-43 fragments but not extreme N-t fragments. Surprisingly, immunohistochemical analysis of inclusions in spinal cord motor neurons in both diseases showed that they are N-t and C-t positive. TDP-43 inclusions in Alzheimer's disease brains also were examined, and similar enrichment in C-t TDP-43 fragments was observed in cortex and hippocampus. These results show that the composition of the inclusions in brain versus spinal cord tissues differ, with an increased representation of C-t TDP-43 fragments in cortical and hippocampal regions. Therefore, regionally different pathogenic processes may underlie the development of abnormal TDP-43 proteinopathies.

297 citations


Journal ArticleDOI
TL;DR: Findings suggest that ALS does not selectively affect only the pyramidal motor system, but rather is a multisystem neurodegenerative TDP-43 proteinopathy.
Abstract: Background Pathological 43-kDa transactivating responsive sequence DNA-binding protein (TDP-43) has been identified recently as the major disease protein in amyotrophic lateral sclerosis (ALS), and in frontotemporal lobar degeneration with ubiquitinated inclusions, with or without motor neuron disease, but the distribution of TDP-43 pathology in ALS may be more widespread than previously described. Objective To determine the extent of TDP-43 pathology in the central nervous systems of patients with clinically confirmed and autopsy confirmed diagnoses of ALS. Design Performance of an immunohistochemical whole–central nervous system scan for evidence of pathological TDP-43 in ALS patients. Setting An academic medical center. Participants We included 31 patients with clinically and pathologically confirmed ALS and 8 control participants. Main Outcome Measures Immunohistochemistry and double-labeling immunofluorescence to assess the frequency and severity of TDP-43 pathology. Results In addition to the stereotypical involvement of upper and lower motor neurons, neuronal and glial TDP-43 pathology was present in multiple areas of the central nervous systems of ALS patients, including in the nigro-striatal system, the neocortical and allocortical areas, and the cerebellum, but not in those of the controls. Conclusions These findings suggest that ALS does not selectively affect only the pyramidal motor system, but rather is a multisystem neurodegenerative TDP-43 proteinopathy.

Journal ArticleDOI
TL;DR: It is suggested that AD and FTLD are anatomically distinct, with degeneration of a posterior parietal network in AD and degenerations of a paralimbic fronto-insular-striatal network in FTLD.
Abstract: To better define the anatomic distinctions between Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD), we retrospectively applied voxel-based morphometry to the earliest magnetic resonance imaging scans of autopsy-proven AD (N = 11), FTLD (N = 18), and controls (N = 40). Compared with controls, AD patients showed gray matter reductions in posterior temporoparietal and occipital cortex; FTLD patients showed atrophy in medial prefrontal and medial temporal cortex, insula, hippocampus, and amygdala; and patients with both disorders showed atrophy in dorsolateral and orbital prefrontal cortex and lateral temporal cortex (P(FWE-corr) < .05). Compared with FTLD, AD patients had decreased gray matter in posterior parietal and occipital cortex, whereas FTLD patients had selective atrophy in anterior cingulate, frontal insula, subcallosal gyrus, and striatum (P < .001, uncorrected). These findings suggest that AD and FTLD are anatomically distinct, with degeneration of a posterior parietal network in AD and degeneration of a paralimbic fronto-insular-striatal network in FTLD.

Journal ArticleDOI
TL;DR: The ratio of CSF tau/Aβ42 is a sensitive and specific biomarker at discriminating frontotemporal lobar degeneration from Alzheimer disease in patients with known pathology.
Abstract: Objective: To evaluate the diagnostic value of CSF biomarkers in patients with known pathology due to frontotemporal lobar degeneration (FTLD). Background: It is important to distinguish FTLD from other neurodegenerative diseases like Alzheimer disease (AD), but this may be difficult clinically because of atypical presentations. Methods: Patients with FTLD (n = 30) and AD (n = 19) were identified at autopsy or on the basis of genetic testing at University of Pennsylvania and Erasmus University Medical Center. CSF was obtained during a diagnostic lumbar puncture and was analyzed using assays for total tau and amyloid-beta 1-42 (Aβ 42 ). Patients also were assessed with a brief neuropsychological battery. Results: CSF total tau level and the ratio of CSF total tau to Aβ 42 (tau/Aβ 42 ) were significantly lower in FTLD than in AD. Receiver operating characteristic curve analyses confirmed that the CSF tau/Aβ 42 ratio is sensitive and specific at discriminating between FTLD and AD, and is more successful at this than CSF total tau alone. Although some neuropsychological measures are significantly different in autopsy-proven FTLD and AD, combining these neuropsychological measures with CSF biomarkers did not improve the ability to distinguish FTLD from AD. Conclusions: The ratio of CSF tau/Aβ 42 is a sensitive and specific biomarker at discriminating frontotemporal lobar degeneration from Alzheimer disease in patients with known pathology.

Journal ArticleDOI
TL;DR: CSF TDP-43 levels in CSF might aid in characterizing subgroups of patients across the ALS and FTLD disease spectrum, and although there is no evidence of pathologically altered Tarpa DNA-binding protein 43 proteins inCSF, TDP’s levels might aid the characterizing of patients within these subgroups.
Abstract: Frontotemporal lobar degeneration (FTLD) is the second most common cause of dementia affecting individuals younger than 65 years.1 On a cellular pathologic level, most FTLD cases are characterized by the presence of ubiquitin-positive inclusions. Because of the nature of aggregated constituents of these inclusions, for which key roles in pathologic mechanisms are proposed, FTLD was categorized into 2 major groups with and without tau. In the FTLD-tau group, filamentous tau proteins form the disease inclusions.2 Recently, pathologically phosphorylated and ubiquitinated TAR DNA-binding protein 43 (TDP-43) was identified as a major pathologic protein of sporadic and familial FTLD with ubiquitin-positive tau-negative inclusions (FTLD-U),3,4 which constitutes more than 50% of all FTLD cases.5 The clinical picture of patients with FTLD-tau and FTLD-U is heterogeneous. Besides behavioral and personality changes, patients manifest language disturbances in primary progressive aphasia with progressive nonfluent aphasia and semantic dementia. In the case of corticobasal degeneration and progressive supranuclear palsy, behavioral abnormalities are accompanied by extrapyramidal features.1 Frontotemporal lobar degeneration can be associated with neurodegeneration of motor neurons in motor cortex, brainstem, and spinal cord, leading to a syndrome with features of amyotrophic lateral sclerosis (ALS) and FTLD.6 In ALS, the most common type of motor neuron disorder (MND), upper and lower motor neurons are affected, and most patients die of respiratory failure on average about 3 years after symptom onset.7,8 Furthermore, approximately 15% of patients with ALS develop dementia categorized as FTLD.9 TDP-43 is not only the main constituent of inclusions in FTLD-U with and without ALS but is also present in sporadic ALS, ALS with dementia, and SOD1-negative ALS.3,10,11 This observation led to the hypothesis that TDP-43 is a common pathologic substrate in these diseases, implicating similar pathophysiologic mechanisms, despite significant clinical, genetic, and neuropathologic heterogeneity of FTLD-U and ALS.3,12 So far (to our knowledge), no specific laboratory marker exists for disease progression or for differential diagnostic use in ALS or FTLD. Because pathologic changes in the brain and spinal cord can be reflected by altered levels of proteins or other analytes in cerebrospinal fluid (CSF), we analyzed CSF from patients having FTLD with and without ALS, from patients having ALS with and without FTLD or signs of frontal disinhibition, and from control subjects to determine if TDP-43 could be detected in CSF and if assaying CSF TDP-43 could be used as a biomarker for the diagnosis, staging, or care of patients with FTLD-U or ALS.

Journal ArticleDOI
TL;DR: The preferential localization and increase of caspase-3 in the PSD fractions in AD is demonstrated for the first time and an important role for caspases 3 in synapse degeneration during disease progression is suggested.
Abstract: Progressive synaptic degeneration and neuron loss are major structural correlates of cognitive impairment in Alzheimer's disease (AD). The mechanisms by which synaptic degeneration in AD occurs have not been established. The activation of proteins within the caspase family has been implicated in AD-associated neurodegeneration, and synaptically localized caspase activity could play a role in the synaptic degeneration and loss found in AD. We used synaptosomal fractionation with Western blotting and immunohistochemistry to examine the anatomical, subcellular, and subsynaptic expression patterns of caspase 3 in both the anterior cingulate cortex and hippocampus of control and AD patients. In both control and AD cases, there was a selective enrichment of caspase- 3 at synapses, particularly in the postsynaptic density (PSD) fractions. Compared with controls, AD patients exhibited significant increases in synaptic procaspase- 3 and active caspase-3 expression levels that were most evident in the PSD fractions. These data demonstrate for the first time the preferential localization and increase of caspase-3 in the PSD fractions in AD and suggest an important role for caspase 3 in synapse degeneration during disease progression.

Journal ArticleDOI
TL;DR: Together, PBR expressions in astrocytes and microglia reflect beneficial and deleterious glial reactions, respectively, in diverse neurodegenerative disorders including AD, pointing to new applications of PBR imaging for monitoring the impact of gliosis on the pathogenesis and treatment of AD.
Abstract: We demonstrate the significance of peripheral benzodiazepine receptor (PBR) imaging in living mouse models of Alzheimer's disease (AD) as biomarkers and functional signatures of glial activation. By radiochemically and immunohistochemically analyzing murine models of the two pathological hallmarks of AD, we found that AD-like Abeta deposition is concurrent with astrocyte-dominant PBR expression, in striking contrast with nonastroglial PBR upregulation in accumulations of AD-like phosphorylated tau. Because tau-induced massive neuronal loss was distinct from the marginal neurodegeneration associated with Abeta plaques in these models, cellular localization of PBR reflected deleterious and beneficial glial reactions to tau versus Abeta pathologies, respectively. This notion was subsequently examined in models of various non-AD neuropathologies, revealing the following reactive glial dynamics underlying differential PBR upregulation: (1) PBR(-) astrogliosis uncoupled with microgliosis or coupled with PBR(+) microgliosis associated with irreversible neuronal insults; and (2) PBR(+) astrogliosis coupled with PBR(- or +/-) microgliosis associated with minimal or reversible neuronal toxicity. Intracranial transplantation of microglia also indicated that nontoxic microglia drives astroglial PBR expression. Moreover, levels of glial cell line-derived neurotrophic factor (GDNF) in astrocytes were correlated with astroglial PBR, except for increased GDNF in PBR(-) astrocytes in the model of AD-like tau pathology, thereby suggesting that PBR upregulation in astrocytes is an indicator of neurotrophic support. Together, PBR expressions in astrocytes and microglia reflect beneficial and deleterious glial reactions, respectively, in diverse neurodegenerative disorders including AD, pointing to new applications of PBR imaging for monitoring the impact of gliosis on the pathogenesis and treatment of AD.

Journal ArticleDOI
TL;DR: The identification of TARDBP mutations provides strong evidence for a direct link between TDP-43 dysfunction and neurodegeneration in ALS.
Abstract: Background Abnormal neuronal inclusions composed of the transactivation response DNA-binding protein 43 (TDP-43) are characteristic neuropathologic lesions in sporadic and familial forms of amyotrophic lateral sclerosis (ALS). This makes TARDBP , the gene encoding for TDP-43, a candidate for genetic screening in ALS. Objectives To investigate the presence and frequency of TARDBP mutations in ALS. Design Genetic analysis. Setting Academic research. Participants One hundred thirty-four patients with sporadic ALS, 31 patients with familial non–superoxide dismutase 1 gene (non- SOD1 ) (OMIM147450) ALS, and 400 healthy control subjects. Main Outcome Measures We identified 2 missense mutations (G348C and the novel N352S) in TARDBP in 2 small kindreds with a hereditary form of ALS with early spinal onset resulting in fatal respiratory insufficiency without clinical relevant bulbar symptoms or signs of cognitive impairment. Results The mutations located in the C-terminus of TDP-43 were absent in 400 controls of white race/ethnicity. The novel identified N352S mutation is predicted to increase TDP-43 phosphorylation, while the G348C mutation might interfere with normal TDP-43 function by forming intermolecular disulfide bridges. Conclusions Mutations in TARDBP are a rare cause of familial non- SOD1 ALS. The identification of TARDBP mutations provides strong evidence for a direct link between TDP-43 dysfunction and neurodegeneration in ALS.

Journal ArticleDOI
TL;DR: In vitro assembly of alpha-Syn fibril assembly was efficiently inhibited by substoichiometric concentrations of purified Hsp70 in the absence of cofactors, suggesting that this critical step in Parkinson's disease pathogenesis may be subject to modulation by a common molecular chaperone.
Abstract: Molecular chaperones of the heat shock protein 70 (Hsp70) family counteract protein misfolding in a variety of neurodegenerative disease models. To determine whether human Hsp70 exerts similar effects on the aggregation of alpha-synuclein (alpha-Syn), the key component of insoluble fibrils present in Parkinson's disease, we investigated alpha-Syn fibril assembly in the presence of Hsp70. We found in vitro assembly was efficiently inhibited by substoichiometric concentrations of purified Hsp70 in the absence of cofactors. Experiments using alpha-Syn deletion mutants indicated that interactions between the Hsp70 substrate binding domain and the alpha-Syn core hydrophobic region underlie assembly inhibition. This assembly process was inhibited prior to the elongation stage as we failed to detect any fibrils by electron microscopy. In addition, fluorescence polarization and binding assays suggest that Hsp70 recognizes soluble alpha-Syn species in a highly dynamic and reversible manner. Together, these results provide novel insights into how Hsp70 suppresses alpha-Syn aggregation. Furthermore, our findings suggest that this critical step in Parkinson's disease pathogenesis may be subject to modulation by a common molecular chaperone.

Journal ArticleDOI
TL;DR: Data are emerging from biochemical, cell-based and transgenic mouse studies which suggest that a pre-fibrillar form of pathological tau may play a key role in eliciting central nervous system neurodegeneration and behavioral impairments.
Abstract: The discovery that mutations within the tau gene lead to frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17) provided direct evidence that tau alterations can lead to neurodegenerative disease. While the presence of tau fibrils and tangles is a common feature of all tauopathies, including Alzheimer's disease (AD), data are emerging from biochemical, cell-based and transgenic mouse studies which suggest that a pre-fibrillar form of pathological tau may play a key role in eliciting central nervous system neurodegeneration and behavioral impairments. Herein we review recent findings that implicate diffusible tau pathology in the onset of neurodegeneration, and discuss the implications of these findings as they relate to tau tangles and possible therapeutic strategies for the treatment of AD and related tauopathies.

Journal ArticleDOI
TL;DR: Findings support the concept that FTLD and ALS represent a clinicopathologic spectrum of one disease, that is, TDP-43 proteinopathy.
Abstract: In this review, we summarize recent advances in understanding frontotemporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS) and related neurodegenerative disorders that are collectively known as TDP-43 proteinopathies, since transactive response DNA-binding protein 43 (TDP-43) was recently shown to be the major component of the ubiquitinated inclusions that are their pathological hallmarks. TDP-43 proteinopathies are distinct from most other neurodegenerative disorders because TDP-43 inclusions are not amyloid deposits. Besides TDP-43-positive inclusions, both sporadic and familial forms of FTLD and ALS have the pathologic TDP-43 signature of abnormal hyperphosphorylation, ubiquitination and C-terminal fragments in affected brain and spinal cord, suggesting that they share a common mechanism of pathogenesis. Thus, these findings support the concept that FTLD and ALS represent a clinicopathologic spectrum of one disease, that is, TDP-43 proteinopathy.

Journal ArticleDOI
TL;DR: These findings demonstrate a distinct molecular phenotype for GRN+ FTLD-U, not readily apparent on clinical or histopathological examination, suggesting distinct pathophysiological mechanisms forGRN+ and GRN- subtypes of FT LD-U.
Abstract: Frontotemporal lobar degeneration is a fatal neurodegenerative disease that results in progressive decline in behavior, executive function and sometimes language. Disease mechanisms remain poorly understood. Recently, however, the DNA- and RNA-binding protein TDP-43 has been identified as the major protein present in the hallmark inclusion bodies of frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U), suggesting a role for transcriptional dysregulation in FTLD-U pathophysiology. Using the Affymetrix U133A microarray platform, we profiled global gene expression in both histopathologically affected and unaffected areas of human FTLD-U brains. We then characterized differential gene expression with biological pathway analyses, cluster and principal component analyses, and subgroup analyses based on brain region and progranulin (GRN) gene status. Comparing 17 FTLD-U brains to 11 controls, we identified 414 upregulated and 210 downregulated genes in frontal cortex (P-value 1300 dysregulated genes in frontal cortex (P-value < 0.001), many participating in pathways uniquely dysregulated in the GRN+ cases. Our findings demonstrate a distinct molecular phenotype for GRN+ FTLD-U, not readily apparent on clinical or histopathological examination, suggesting distinct pathophysiological mechanisms for GRN+ and GRN- subtypes of FTLD-U. In addition, these data from a large number of human brains provide a valuable resource for future testing of disease hypotheses.

Journal ArticleDOI
TL;DR: Modifications in the published criteria permit a significantly greater number of dementia cases with LRP to be classified and propose that these modified criteria for the categorization of LRP be utilized in patients with a history of dementia.
Abstract: Lewy-related pathology (LRP) is a common pathologic finding at autopsy in dementia patients. Recently criteria for categorizing types of LRP in dementia patients were published, though these criteria have yet to be systematically applied to large dementia samples. We examined a large (n = 208) referral-based autopsy sample for LRP, and applied the published criteria for LRP categorization to these cases. We found almost half (49%) of LRP positive cases from this sample were not classifiable. However, modifying the published criteria by reducing the number of regions requiring examination, allowing more variability in LRP severity scores within specific brain regions, and adding an amygdala predominant category permitted classification of 97% of LRP positive cases from the referral-based sample. Application of the modified criteria to an unrelated community-based autopsy sample (n = 226) allowed classification of 96% of LRP positive cases. Modest modifications in the published criteria permit a significantly greater number of dementia cases with LRP to be classified. In addition, this modification allows for more limited sampling of brain regions for classification of LRP. We propose that these modified criteria for the categorization of LRP be utilized in patients with a history of dementia.

Journal ArticleDOI
TL;DR: A TARDBP variant (A90V) is reported in a FTLD/ALS patient with a family history of dementia and may be a genetic risk factor for FT LD/ALS because it predisposes nuclear TDP‐43 to redistribute to the cytoplasm and form pathological aggregates.

Journal ArticleDOI
TL;DR: Success will facilitate the ability to reliably diagnose Alzheimer’s disease while the symptoms of brain failure are mild and may provide objective measures of disease-modifying treatment efficacy.
Abstract: The increasing prevalence of Alzheimer’s disease and the devastating consequences of late-life dementia motivates the drive to develop diagnostic biomarkers to reliably identify the pathology associat

Journal ArticleDOI
TL;DR: It is demonstrated that T1rho can potentially constitute an important biomarker of AD and be compared with changes in brain volume in the same regions of the brain and measured on patients with clinically diagnosed AD, MCI and in age-matched cognitively normal control subjects.

Journal ArticleDOI
TL;DR: Moves consistently distinguishing between patient subgroups can be used to bolster diagnostic accuracy throughout the course of these diseases, while measures demonstrating undifferentiated longitudinal decline may serve as useful endpoints in treatment trials.
Abstract: Background: The natural history of patients with pathologically proven frontotemporal lobar degeneration (FTLD) is important from clinical and biologic perspectives, but is not well documented quantitatively. Methods: We examine longitudinal decline in cognitive functioning in an autopsy-proven cohort of patients with the clinical diagnosis of a FTLD spectrum disorder or FTLD pathology using a panel of neuropsychological measures. Patients are categorized according to findings at autopsy into tau-positive FTLD, tau-negative FTLD, and frontal variant-Alzheimer disease (fvAD) subgroups. Results: Patients decline significantly over time on all neuropsychological measures. Moreover, several measures differentiate between histopathologically distinct subgroups throughout the course of the disease process. This includes a significant double dissociation involving relative difficulty on a visual constructional measure in tau-positive patients compared to relatively impaired visual confrontation naming in tau-negative patients. Longitudinal measures of FAS naming fluency and animal naming fluency also distinguish tau-positive patients and tau-negative patients with FTLD from patients with fvAD. Other measures show significant decline but do not distinguish between histopathologic groups longitudinally. Conclusion: Our findings suggest different longitudinal patterns of cognitive decline in pathologically defined subgroups of patients. Measures consistently distinguishing between patient subgroups can be used to bolster diagnostic accuracy throughout the course of these diseases, while measures demonstrating undifferentiated longitudinal decline may serve as useful endpoints in treatment trials.

Journal ArticleDOI
TL;DR: Findings indicate that the TDP-43 inclusions seen in frontotemporal dementias and motor neuron diseases are specific to a neurodegenerative process.
Abstract: TDP-43 proteinopathies are a newly categorized group of neurodegenerative diseases characterized by progressive cognitive and motor impairments associated with the abnormal accumulation and mislocalization of the nuclear TAR–DNA-binding protein-43 (TDP-43) in neurons and glia. Little is known about the expression and distribution of TDP-43 in normal and pathologic states. To determine whether TDP-43 inclusions arise in response to metabolic insults such as anoxia or ischemia, a panel of anoxic, ischemic and neoplastic lesions was examined for TDP-43 expression by immunohistochemistry. These lesions did not exhibit TDP-43 inclusions like those seen in neurodegenerative frontotemporal dementia and motor neuron disease. However, TDP-43 was found in Rosenthal fibers and eosinophilic granular bodies associated with low-grade tumors and reactive brain tissue. Furthermore, cytoplasmic TDP-43 was seen in M-phase tumor cells, but not in mitotic spindles. These findings expand our knowledge of the distribution and localization of TDP-43, and indicate that the TDP-43 inclusions seen in frontotemporal dementias and motor neuron diseases are specific to a neurodegenerative process.

Journal ArticleDOI
TL;DR: It is concluded that actin filaments do not function as a scaffold to organize and transport these and possibly other SCb proteins and that the transport of protein complexes in SCb is powered by microtubule motors.
Abstract: Slow component-b (SCb) translocates ∼200 diverse proteins from the cell body to the axon and axon tip at average rates of ∼2–8 mm/d. Several studies suggest that SCb proteins are cotransported as one or more macromolecular complexes, but the basis for this cotransport is unknown. The identification of actin and myosin in SCb led to the proposal that actin filaments function as a scaffold for the binding of other SCb proteins and that transport of these complexes is powered by myosin: the “microfilament-complex” model. Later, several SCb proteins were also found to bind F-actin, supporting the idea, but despite this, the model has never been directly tested. Here, we test this model by disrupting the cytoskeleton in a live-cell model system wherein we directly visualize transport of SCb cargoes. We focused on three SCb proteins that we previously showed were cotransported in our system: α-synuclein, synapsin-I, and glyceraldehyde-3-phosphate dehydrogenase. Disruption of actin filaments with latrunculin had no effect on the velocity or frequency of transport of these three proteins. Furthermore, cotransport of these three SCb proteins continued in actin-depleted axons. We conclude that actin filaments do not function as a scaffold to organize and transport these and possibly other SCb proteins. In contrast, depletion of microtubules led to a dramatic inhibition of vectorial transport of SCb cargoes. These findings do not support the microfilament-complex model, but instead indicate that the transport of protein complexes in SCb is powered by microtubule motors.

Journal ArticleDOI
TL;DR: Tau-positive pathology represents a significant risk to survival in FTLD, whereas tau-negative pathology is associated with a longer survival time when clinical MND is excluded.
Abstract: Objective: To examine the clinical and pathological factors associated with survival in autopsy-confirmed frontotemporal lobar degeneration (FTLD). Methods: The final analysis cohort included 71 patients with pathologically proven FTLD, excluding patients with clinical motor neuron disease (MND), evaluated at the University of Pennsylvania or at the University of California, San Francisco. We assessed clinical and demographic features; cognitive functioning at presentation; genetic markers of disease; and graded anatomical distribution of tau, ubiquitin and amyloid pathology. Results: The tau-negative group (n = 35) had a median survival time of 96 months (95% CI: 72–114 months), whereas the tau-positive group (n = 36) had a median survival time of 72 months (95% CI: 60–84 months). Patients with tau-positive pathology across all brain regions had shorter survival than those with tau-negative pathology in univariate Cox regression analyses (Hazard ratio of dying = 2.003, 95% CI = 1.209–3.318, p = 0.007). Conclusions: Tau-positive pathology represents a significant risk to survival in FTLD, whereas tau-negative pathology is associated with a longer survival time when clinical MND is excluded.