scispace - formally typeset
Search or ask a question
Author

John Q. Trojanowski

Bio: John Q. Trojanowski is an academic researcher from University of Pennsylvania. The author has contributed to research in topics: Alzheimer's disease & Dementia. The author has an hindex of 226, co-authored 1467 publications receiving 213948 citations. Previous affiliations of John Q. Trojanowski include Vanderbilt University & University of California, San Francisco.


Papers
More filters
Journal ArticleDOI
TL;DR: The misconceptions about the clinical and pathological features of chronic traumatic encephalopathy that cause confusion and controversy not only in the public but also among health-care professionals are addressed.
Abstract: The term chronic traumatic encephalopathy (CTE) has recently entered public consciousness via media reports and even a Hollywood movie. However, in contrast to general impressions, the incidence of CTE is unknown, the clinical diagnostic criteria have not been agreed upon and the current neuropathological characterization of CTE is acknowledged as preliminary. Additionally, few studies have compared the pathologies of CTE with those of other neurodegenerative disorders or of age-matched controls. Consequently, disagreement continues about the neuropathological aspects that make CTE unique. Furthermore, CTE is widely considered to be a consequence of exposure to repeated head blows, but evidence suggests that a single moderate or severe traumatic brain injury can also induce progressive neuropathological changes. These unresolved aspects of CTE underlie disparate claims about its clinical and pathological features, leading to confusion among the public and health-care professionals alike.

96 citations

Journal Article
TL;DR: Chen et al. as mentioned in this paper evaluated TMEM106B as a genetic modifier in C9orf72-associated frontotemporal lobar degeneration (FTLD)-associated TAR DNA binding protein of 43kDa.
Abstract: OBJECTIVE: To evaluate TMEM106B as a genetic modifier in C9orf72-associated frontotemporal lobar degeneration. BACKGROUND: Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9orf72) have recently been linked to frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS), and may be the most common genetic cause of both neurodegenerative diseases. Genetic variants at TMEM106B influence risk for the most common neuropathological subtype of FTLD, characterized by inclusions of TAR DNA binding protein of 43kDa (FTLD-TDP). DESIGN/METHODS: Discovery cohort-Replication cohort design to investigate the influence of TMEM106B genotype on age at onset and age at death for FTLD-TDP associated with C9orf72 expansions. RESULTS: We report that TMEM106B rs1990622 genotype affects age at death in a single-site discovery cohort of FTLD patients with C9orf72 expansions (n=14), with the minor allele correlated with earlier age at death (p=0.024). We replicate this modifier effect in a 30-site international neuropathological cohort of FTLD-TDP patients with C9orf72 expansions (n=75), again finding that the minor allele associates with earlier age at death (p=0.016), as well as earlier age at onset (p=0.019). Indeed, in our international replication cohort, with each additional minor allele at rs1990622, patients had a decrease of >3 years in age at death and age at FTLD onset. In contrast, TMEM106B genotype does not affect age at onset or death in 241 FTLD-TDP cases negative for GRN mutations or C9orf72 expansions. CONCLUSIONS: TMEM106B is a genetic modifier of FTLD with C9orf72 expansions. Intriguingly, the genotype that confers decreased risk for developing FTLD-TDP (minor, or C, allele of rs1990622) is associated with earlier age at onset and death in C9orf72 expansion carriers, providing an example of sign epistasis in human neurodegenerative disease. Disclosure: Dr. Chen-Plotkin has received research support from Pfizer Inc. Dr. Gallagher has nothing to disclose. Dr. Suh has nothing to disclose. Dr. Grossman has received personal compensation for activities with Allon Therapeutics. Dr. Elman has nothing to disclose. Dr. McCluskey has nothing to disclose. Dr. Trojanowksi has received personal compensation for activities with Pfizer Inc., Johnson & Johnson, MetLife, and Bristol-Myers Squibb Co. as a consultant. Dr. Trojanowski has received royalty payments through Penn licenses. Dr. Trojanowksi has received research support from AstraZeneca and Bristol-Myers Squibb Co. Dr. Lee has received personal compensation for activities with Pfizer Inc., Johnson & Johnson, MetLife, and Bristol-Myers Squibb Co. Dr. Lee has received royalty payments from PENN licenses and Eli Lily & Co., Inc. Dr. Lee has received research support from AstraZeneca and Bristol-Myers Squibb Co. Dr. Van Deerlin has nothing to disclose.

96 citations

Journal ArticleDOI
TL;DR: It is proposed that the MAPT knock-in mice will make it feasible to investigate the behaviors and characteristics of human tau in an animal model, and it is observed that tau humanization significantly accelerates cell-to-cell propagation of AD brain-derived pathological tau both in the absence and presence of Aβ-amyloidosis.

96 citations

Journal ArticleDOI
TL;DR: The potential power of single-cell gene expression studies within the CNS in relation to neurodegenerative and neuropsychiatric disorders such as Alzheimer's disease (AD) and schizophrenia, respectively are illustrated.
Abstract: Technical and experimental advances in microaspiration techniques, RNA amplification, quantitative real-time polymerase chain reaction (qPCR), and cDNA microarray analysis have led to an increase in the number of studies of single-cell gene expression. In particular, the central nervous system (CNS) is an ideal structure to apply single-cell gene expression paradigms. Unlike an organ that is composed of one principal cell type, the brain contains a constellation of neuronal and noneuronal populations of cells. A goal is to sample gene expression from similar cell types within a defined region without potential contamination by expression profiles of adjacent neuronal subpopulations and noneuronal cells. The unprecedented resolution afforded by single-cell RNA analysis in combination with cDNA microarrays and qPCR-based analyses allows for relative gene expression level comparisons across cell types under different experimental conditions and disease states. The ability to analyze single cells is an important distinction from global and regional assessments of mRNA expression and can be applied to optimally prepared tissues from animal models as well as postmortem human brain tissues. This focused review illustrates the potential power of single-cell gene expression studies within the CNS in relation to neurodegenerative and neuropsychiatric disorders such as Alzheimer's disease (AD) and schizophrenia, respectively.

96 citations

Journal ArticleDOI
TL;DR: It is found that the insoluble tau isoform patterns correlated strongly with the independently derived histopathologic diagnoses and forms a framework for further refinement of this classification scheme.
Abstract: The frontotemporal dementias (FTDs) are a heterogeneous group of neurodegenerative disorders that are characterized clinically by dementia, personality changes, language impairment, and occasionally extrapyramidal movement disorders. Historically, the diagnosis and classification of FTDs has been fraught with difficulties, especially with regard to establishing a consensus on the neuropathologic diagnosis. Recently, an international group of scientists participated in a consensus conference to develop such neuropathologic criteria. They recommended a diagnostic classification scheme that incorporated a biochemical analysis of the insoluble tau isoform composition, as well as ubiquitin immunohistochemistry. The use and reliability of this classification system has yet to be examined. In this study, we evaluated 21 cases of FTD. Using traditional histochemical stains and tau protein and ubiquitin immunohistochemistry, we separated each case into one of the following categories: classic Pick disease (PiD; n = 7), corticobasal degeneration (CBD; n = 5), dementia lacking distinctive histopathologic features (DLDH; n = 4), progressive supranuclear palsy (PSP; n = 2), frontotemporal lobar degeneration with motor neuron disease or motor neuron disease-type inclusions (FTLD-MND/MNI; n = 2), and neurofibrillary tangle dementia (NFTD; n = 1). Additionally, we independently categorized each case by the insoluble tau isoform pattern, including 3R (n = 5), 4R (n = 7), 3R/4R (n = 3), and no insoluble tau (n = 6). As suggested by the proposed diagnostic scheme, we found that the insoluble tau isoform patterns correlated strongly with the independently derived histopathologic diagnoses (p < 0.001). The data show that cases containing predominantly 3R tau were classic PiD (100%). Cases with predominantly 4R tau were either CBD (71%) or PSP (29%). Cases with both 3R and 4R tau were either a combination of PiD and Alzheimer disease (67%) or NFTD (33%). Finally, cases with no insoluble tau were either DLDH (67%) or FTLD-MND/MNI (33%). To further characterize these cases, we also performed quantitative Western blots for soluble tau, APOE genotyping, and, in selected cases, tau gene sequencing. We show that soluble tau is reduced in DLDH and FTLD-MND/MNI and that APOE4 is overrepresented in PiD and DLDH. We also identified a new family with the R406W mutation and pathology consistent with NFTD. This study validates the recently proposed diagnostic criteria and forms a framework for further refinement of this classification scheme.

96 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The workgroup sought to ensure that the revised criteria would be flexible enough to be used by both general healthcare providers without access to neuropsychological testing, advanced imaging, and cerebrospinal fluid measures, and specialized investigators involved in research or in clinical trial studies who would have these tools available.
Abstract: The National Institute on Aging and the Alzheimer's Association charged a workgroup with the task of revising the 1984 criteria for Alzheimer's disease (AD) dementia. The workgroup sought to ensure that the revised criteria would be flexible enough to be used by both general healthcare providers without access to neuropsychological testing, advanced imaging, and cerebrospinal fluid measures, and specialized investigators involved in research or in clinical trial studies who would have these tools available. We present criteria for all-cause dementia and for AD dementia. We retained the general framework of probable AD dementia from the 1984 criteria. On the basis of the past 27 years of experience, we made several changes in the clinical criteria for the diagnosis. We also retained the term possible AD dementia, but redefined it in a manner more focused than before. Biomarker evidence was also integrated into the diagnostic formulations for probable and possible AD dementia for use in research settings. The core clinical criteria for AD dementia will continue to be the cornerstone of the diagnosis in clinical practice, but biomarker evidence is expected to enhance the pathophysiological specificity of the diagnosis of AD dementia. Much work lies ahead for validating the biomarker diagnosis of AD dementia.

13,710 citations

Journal ArticleDOI
19 Jul 2002-Science
TL;DR: It has been more than 10 years since it was first proposed that the neurodegeneration in Alzheimer's disease (AD) may be caused by deposition of amyloid β-peptide in plaques in brain tissue and the rest of the disease process is proposed to result from an imbalance between Aβ production and Aβ clearance.
Abstract: It has been more than 10 years since it was first proposed that the neurodegeneration in Alzheimer9s disease (AD) may be caused by deposition of amyloid β-peptide (Aβ) in plaques in brain tissue. According to the amyloid hypothesis, accumulation of Aβ in the brain is the primary influence driving AD pathogenesis. The rest of the disease process, including formation of neurofibrillary tangles containing tau protein, is proposed to result from an imbalance between Aβ production and Aβ clearance.

12,652 citations

Journal ArticleDOI
TL;DR: There is growing evidence that aging involves, in addition, progressive changes in free radical-mediated regulatory processes that result in altered gene expression.
Abstract: At high concentrations, free radicals and radical-derived, nonradical reactive species are hazardous for living organisms and damage all major cellular constituents. At moderate concentrations, how...

9,131 citations