scispace - formally typeset
Search or ask a question
Author

John Q. Trojanowski

Bio: John Q. Trojanowski is an academic researcher from University of Pennsylvania. The author has contributed to research in topics: Alzheimer's disease & Dementia. The author has an hindex of 226, co-authored 1467 publications receiving 213948 citations. Previous affiliations of John Q. Trojanowski include Vanderbilt University & University of California, San Francisco.


Papers
More filters
Journal ArticleDOI
TL;DR: The current approaches in using CSF AD biomarkers (total tau, p-tau181, and Aβ42) to predict the presence of AD pathology are reviewed, and the recent work using multi-analyte profiling to derive novel biomarkers for biofluid-based AD diagnosis is reviewed.
Abstract: Ante-mortem diagnosis of neurodegenerative disorders based on clinical features alone is associated with variable sensitivity and specificity, and biomarkers can potentially improve the accuracy of clinical diagnosis. In patients suspected of having Alzheimer’s disease (AD), alterations in cerebrospinal fluid (CSF) biomarkers that reflect the neuropathologic changes of AD strongly support the diagnosis, although there is a trade-off between sensitivity and specificity due to similar changes in cognitively healthy subjects. Here, we review the current approaches in using CSF AD biomarkers (total tau, p-tau181, and Aβ42) to predict the presence of AD pathology, and our recent work using multi-analyte profiling to derive novel biomarkers for biofluid-based AD diagnosis. We also review our use of the multi-analyte profiling strategy to identify novel biomarkers that can distinguish between subtypes of frontotemporal lobar degeneration, and those at risk of developing cognitive impairment in Parkinson’s disease. Multi-analyte profiling is a powerful tool for biomarker discovery in complex neurodegenerative disorders, and analytes associated with one or more diseases may shed light on relevant biological pathways and potential targets for intervention.

86 citations

Journal ArticleDOI
TL;DR: A body of experimental evidence suggests that the development of tau inclusions leads to the neurodegeneration observed in tauopathies, and there is a growing interest in developing tau‐directed therapeutic agents.
Abstract: A group of neurodegenerative diseases referred to as tauopathies are characterized by the presence of brain cells harboring inclusions of pathological species of the tau protein. These disorders include Alzheimer's disease and frontotemporal lobar degeneration due to tau pathology, including progressive supranuclear palsy, corticobasal degeneration, and Pick's disease. Tau is normally a microtubule (MT)-associated protein that appears to play an important role in ensuring proper axonal transport, but in tauopathies tau becomes hyperphosphorylated and disengages from MTs, with consequent misfolding and deposition into inclusions that mainly affect neurons but also glia. A body of experimental evidence suggests that the development of tau inclusions leads to the neurodegeneration observed in tauopathies, and there is a growing interest in developing tau-directed therapeutic agents. The following review provides a summary of strategies under investigation for the potential treatment of tauopathies, highlighting both the promises and challenges associated with these various therapeutic approaches.

86 citations

Journal ArticleDOI
TL;DR: The data suggest that the adult mouse CP is a source of factor(s) that inhibits tumor formation and induce a catecholaminergic neuronal phenotype in these human NT2 cells in vivo and in vitro.
Abstract: NTera-2 (NT2) cells are a human embryonal carcinoma (EC) cell line derived from a teratocarcinoma that differentiate exclusively into postmitotic neurons in vitro following retinoic acid (RA) treatment. Like other EC cell lines, NT2 cells rapidly form lethal tumors following transplantation into peripheral sites or many regions of the brain. However, when grafts are confined to the caudoputamen (CP), the NT2 cells differentiate into postmitotic neuronlike cells and do not form lethal tumors. To examine the long-term fate of such grafts, we studied NT2 cell transplants in the CP of nude mice that survived for > 1 year. NT2 cells in these grafts acquired molecular markers of fully mature neurons including the low, middle, and high molecular weight neurofilament proteins, microtubule-associated protein 2, tau, and synaptophysin. Furthermore, neuronlike cells in long-term CP grafts formed synaptic structures, and their processes became myelinated, whereas tyrosine hydroxylase (TH)-positive neuronlike cells in the grafts increased with progressively longer postimplantation survival times. Soluble extracts of the adult mouse CP augmented TH expression in RA-treated NT2 cells in vitro. These data suggest that the adult mouse CP is a source of factor(s) that inhibits tumor formation and induce a catecholaminergic neuronal phenotype in these human NT2 cells in vivo and in vitro. Identification of these factors could accelerate efforts to elucidate mechanisms that regulate progenitor cell fate and the commitment of neurons to specific neurotransmitter phenotypes. © 1996 Wiley-Liss, Inc.

86 citations

Journal ArticleDOI
TL;DR: Conversion scores between the MMSE, MoCA, and DRS‐2 using equipercentile equating and log‐linear smoothing enable direct and easy comparison of three routinely used cognitive screening assessments in PD patients.
Abstract: Cognitive impairment is one of the earliest, most common, and most disabling non-motor symptoms in Parkinson's disease (PD). Thus, routine screening of global cognitive abilities is important for the optimal management of PD patients. Few global cognitive screening instruments have been developed for or validated in PD patients. The Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and Dementia Rating Scale-2 (DRS-2) have been used extensively for cognitive screening in both clinical and research settings. Determining how to convert the scores between instruments would facilitate the longitudinal assessment of cognition in clinical settings and the comparison and synthesis of cognitive data in multicenter and longitudinal cohort studies. The primary aim of this study was to apply a simple and reliable algorithm for the conversion of MoCA to MMSE scores in PD patients. A secondary aim was to apply this algorithm for the conversion of DRS-2 to both MMSE and MoCA scores. The cognitive performance of a convenience sample of 360 patients with idiopathic PD was assessed by at least two of these cognitive screening instruments. We then developed conversion scores between the MMSE, MoCA, and DRS-2 using equipercentile equating and log-linear smoothing. The conversion score tables reported here enable direct and easy comparison of three routinely used cognitive screening assessments in PD patients.

86 citations

Journal ArticleDOI
TL;DR: The level of the presynaptic protein growth‐associated protein 43 (GAP‐43) in cerebrospinal fluid (CSF) has previously been shown to be increased in Alzheimer's disease and thus may serve as an outcome measure in clinical trials and facilitate earlier disease detection.
Abstract: Introduction The level of the presynaptic protein growth-associated protein 43 (GAP-43) in cerebrospinal fluid (CSF) has previously been shown to be increased in Alzheimer's disease (AD) and thus may serve as an outcome measure in clinical trials and facilitate earlier disease detection. Methods We developed an enzyme-linked immunosorbent assay for CSF GAP-43 and measured healthy controls (n = 43), patients with AD (n = 275), or patients with other neurodegenerative diseases (n = 344). In a subpopulation (n = 93), CSF GAP-43 concentrations from neuropathologically confirmed cases were related to Aβ plaques, tau, α-synuclein, and TDP-43 pathologies. Results GAP-43 was significantly increased in AD compared to controls and most neurodegenerative diseases and correlated with the magnitude of neurofibrillary tangles and Aβ plaques in the hippocampus, amygdala, and cortex. GAP-43 was not associated to α-synuclein or TDP-43 pathology. Discussion The presynaptic marker GAP-43 is associated with both diagnosis and neuropathology of AD and thus may be useful as a sensitive and specific biomarker for clinical research.

86 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The workgroup sought to ensure that the revised criteria would be flexible enough to be used by both general healthcare providers without access to neuropsychological testing, advanced imaging, and cerebrospinal fluid measures, and specialized investigators involved in research or in clinical trial studies who would have these tools available.
Abstract: The National Institute on Aging and the Alzheimer's Association charged a workgroup with the task of revising the 1984 criteria for Alzheimer's disease (AD) dementia. The workgroup sought to ensure that the revised criteria would be flexible enough to be used by both general healthcare providers without access to neuropsychological testing, advanced imaging, and cerebrospinal fluid measures, and specialized investigators involved in research or in clinical trial studies who would have these tools available. We present criteria for all-cause dementia and for AD dementia. We retained the general framework of probable AD dementia from the 1984 criteria. On the basis of the past 27 years of experience, we made several changes in the clinical criteria for the diagnosis. We also retained the term possible AD dementia, but redefined it in a manner more focused than before. Biomarker evidence was also integrated into the diagnostic formulations for probable and possible AD dementia for use in research settings. The core clinical criteria for AD dementia will continue to be the cornerstone of the diagnosis in clinical practice, but biomarker evidence is expected to enhance the pathophysiological specificity of the diagnosis of AD dementia. Much work lies ahead for validating the biomarker diagnosis of AD dementia.

13,710 citations

Journal ArticleDOI
19 Jul 2002-Science
TL;DR: It has been more than 10 years since it was first proposed that the neurodegeneration in Alzheimer's disease (AD) may be caused by deposition of amyloid β-peptide in plaques in brain tissue and the rest of the disease process is proposed to result from an imbalance between Aβ production and Aβ clearance.
Abstract: It has been more than 10 years since it was first proposed that the neurodegeneration in Alzheimer9s disease (AD) may be caused by deposition of amyloid β-peptide (Aβ) in plaques in brain tissue. According to the amyloid hypothesis, accumulation of Aβ in the brain is the primary influence driving AD pathogenesis. The rest of the disease process, including formation of neurofibrillary tangles containing tau protein, is proposed to result from an imbalance between Aβ production and Aβ clearance.

12,652 citations

Journal ArticleDOI
TL;DR: There is growing evidence that aging involves, in addition, progressive changes in free radical-mediated regulatory processes that result in altered gene expression.
Abstract: At high concentrations, free radicals and radical-derived, nonradical reactive species are hazardous for living organisms and damage all major cellular constituents. At moderate concentrations, how...

9,131 citations