scispace - formally typeset
Search or ask a question
Author

John Q. Trojanowski

Bio: John Q. Trojanowski is an academic researcher from University of Pennsylvania. The author has contributed to research in topics: Alzheimer's disease & Dementia. The author has an hindex of 226, co-authored 1467 publications receiving 213948 citations. Previous affiliations of John Q. Trojanowski include Vanderbilt University & University of California, San Francisco.


Papers
More filters
Journal ArticleDOI
TL;DR: GBA variants predict a more rapid progression of cognitive dysfunction and motor symptoms in patients with PD, with a greater effect on PIGD than tremor, and influence the heterogeneity in symptom progression observed in PD.
Abstract: Importance Parkinson disease (PD) is heterogeneous in symptom manifestation and rate of progression. Identifying factors that influence disease progression could provide mechanistic insight, improve prognostic accuracy, and elucidate novel therapeutic targets. Objective To determine whether GBA mutations and the E326K polymorphism modify PD symptom progression. Design, Setting, and Participants The entire GBA coding region was screened for mutations and E326K in 740 patients with PD enrolled at 7 sites from the PD Cognitive Genetics Consortium. Detailed longitudinal motor and cognitive assessments were performed with patients in the on state. Main Outcomes and Measures Linear regression was used to test for an association between GBA genotype and motor progression, with the Movement Disorder Society–sponsored version of the Unified Parkinson’s Disease Rating Scale Part III (MDS-UPDRS III) score at the last assessment as the outcome and GBA genotype as the independent variable, with adjustment for levodopa equivalent dose, sex, age, disease duration, MDS-UPDRS III score at the first assessment, duration of follow-up, and site. Similar methods were used to examine the association between genotype and tremor and postural instability and gait difficulty (PIGD) scores. To examine the effect of GBA genotype on cognitive progression, patients were classified into those with conversion to mild cognitive impairment or dementia during the study (progression) and those without progression. The association between GBA genotype and progression status was then tested using logistic regression, adjusting for sex, age, disease duration, duration of follow-up, years of education, and site. Results Of the total sample of 733 patients who underwent successful genotyping, 226 (30.8%) were women and 507 (69.2%) were men (mean [SD] age, 68.1 [8.8] years). The mean (SD) duration of follow-up was 3.0 (1.7) years. GBA mutations (β = 4.65; 95% CI, 1.72-7.58; P = .002), E326K (β = 3.42; 95% CI, 0.66-6.17; P = .02), and GBA variants combined as a single group (β = 4.01; 95% CI, 1.95-6.07; P = 1.5 × 10 −4 ) were associated with a more rapid decline in MDS-UPDRS III score. Combined GBA variants (β = 0.38; 95% CI, 0.23-0.53; P = .01) and E326K (β = 0.64; 95% CI, 0.43-0.86; P = .002) were associated with faster progression in PIGD scores, but not in tremor scores. A significantly higher proportion of E326K carriers (10 of 21 [47.6%]; P = .01) and GBA variant carriers (15 of 39 [38.5%]; P = .04) progressed to mild cognitive impairment or dementia. Conclusions and Relevance GBA variants predict a more rapid progression of cognitive dysfunction and motor symptoms in patients with PD, with a greater effect on PIGD than tremor. Thus, GBA variants influence the heterogeneity in symptom progression observed in PD.

173 citations

Journal ArticleDOI
TL;DR: The preferential localization and increase of caspase-3 in the PSD fractions in AD is demonstrated for the first time and an important role for caspases 3 in synapse degeneration during disease progression is suggested.
Abstract: Progressive synaptic degeneration and neuron loss are major structural correlates of cognitive impairment in Alzheimer's disease (AD). The mechanisms by which synaptic degeneration in AD occurs have not been established. The activation of proteins within the caspase family has been implicated in AD-associated neurodegeneration, and synaptically localized caspase activity could play a role in the synaptic degeneration and loss found in AD. We used synaptosomal fractionation with Western blotting and immunohistochemistry to examine the anatomical, subcellular, and subsynaptic expression patterns of caspase 3 in both the anterior cingulate cortex and hippocampus of control and AD patients. In both control and AD cases, there was a selective enrichment of caspase- 3 at synapses, particularly in the postsynaptic density (PSD) fractions. Compared with controls, AD patients exhibited significant increases in synaptic procaspase- 3 and active caspase-3 expression levels that were most evident in the PSD fractions. These data demonstrate for the first time the preferential localization and increase of caspase-3 in the PSD fractions in AD and suggest an important role for caspase 3 in synapse degeneration during disease progression.

172 citations

Journal ArticleDOI
TL;DR: To study the effect of apolipoprotein E ϵ4 status on biomarkers of neurodegeneration, neuronal injury, and brain Aβ amyloid load in cognitively normal subjects, amnestic subjects with mild cognitive impairment (aMCI), and patients with Alzheimer disease (AD).
Abstract: Apolipoprotein E (APOE) e4 is the most important known genetic risk factor for typical late onset Alzheimer disease (AD). The lifetime risk of developing AD is increased and the age of onset of the disease is lowered with increasing number of APOE e4 alleles.1–4 Aβ1–42 and tau levels measured in cerebrospinal fluid (CSF) and atrophy seen on magnetic resonance imaging (MRI) are indicators of important disease-related pathological processes in AD. Low CSF Aβ1–42 reflects deposition of Aβ in plaques.5 High CSF t-tau levels reflect active axonal and neuronal damage.6 Atrophy seen on MRI is the direct result of loss of neurons, synapses, and dendritic arborization.7 In this paper, we use Structural Abnormality Index (STAND) scores as an indicator of severity of an AD-like pattern of atrophy on structural MRI. STAND scores were developed in our lab to condense the severity and location of AD-related atrophy on the 3-dimensional MRI scan into a single number.8 The effect of APOE genotype on neuronal pathology and amyloid load has been studied in autopsy specimens.9–13 Several in vivo CSF Aβ1–42 and t-tau studies,14–17 MRI studies,18–22 and fluorodeoxyglucose-positron emission tomography (PET) imaging studies23–25 have also studied the effect of APOE independently in each of these modalities. The first Alzheimer's Disease Neuroimaging Initiative (ADNI) CSF biomarker study also investigated the effect of APOE on CSF biomarkers, and found that Aβ1–42 concentration is lowest in subjects with 2 APOE e4 alleles and rises as the number of alleles decreases.26 However, there have not been in vivo studies that have investigated the influence of e4 allele on the surrogates of Aβ amyloid deposition and neuronal pathology together as measured by CSF and MRI in a cohort of subjects that spans the cognitive spectrum. The main aim of our paper was to evaluate the effect of APOE genotype on biomarkers of Aβ amyloid load and neuronal pathology by answering these questions: (1) How does APOE genotype effect CSF Aβ1–42 and t-tau levels and atrophy on MRI within each clinical group? (2) How does APOE genotype affect biomarker discrimination between different clinical groups (cognitively normal [CN], amnestic mild cognitive impairment [aMCI], AD)? (3) How much of the variability in the biomarkers is explained by clinical diagnosis versus APOE genotype? and (4) Does the relationship between continuous measures of cognitive performance and the biomarkers differ by APOE genotype?

172 citations

Journal ArticleDOI
Adam C. Naj1, Gyungah Jun2, Christiane Reitz3, Brian W. Kunkle4  +180 moreInstitutions (45)
TL;DR: The combined effects of Alzheimer disease risk variants on AAO are on the scale of, but do not exceed, the APOE effect, and additional genetic contributions toAAO are individually likely to be small.
Abstract: Importance Because APOE locus variants contribute to risk of late-onset Alzheimer disease (LOAD) and to differences in age at onset (AAO), it is important to know whether other established LOAD risk loci also affect AAO in affected participants. Objectives To investigate the effects of known Alzheimer disease risk loci in modifying AAO and to estimate their cumulative effect on AAO variation using data from genome-wide association studies in the Alzheimer Disease Genetics Consortium. Design, Setting, and Participants The Alzheimer Disease Genetics Consortium comprises 14 case-control, prospective, and family-based data sets with data on 9162 participants of white race/ethnicity with Alzheimer disease occurring after age 60 years who also had complete AAO information, gathered between 1989 and 2011 at multiple sites by participating studies. Data on genotyped or imputed single-nucleotide polymorphisms most significantly associated with risk at 10 confirmed LOAD loci were examined in linear modeling of AAO, and individual data set results were combined using a random-effects, inverse variance–weighted meta-analysis approach to determine whether they contribute to variation in AAO. Aggregate effects of all risk loci on AAO were examined in a burden analysis using genotype scores weighted by risk effect sizes. Main Outcomes and Measures Age at disease onset abstracted from medical records among participants with LOAD diagnosed per standard criteria. Results Analysis confirmed the association of APOE with earlier AAO ( P = 3.3 × 10 −96 ), with associations in CR1 (rs6701713, P = 7.2 × 10 −4 ), BIN1 (rs7561528, P = 4.8 × 10 −4 ), and PICALM (rs561655, P = 2.2 × 10 −3 ) reaching statistical significance ( P APOE contributes to 3.7% of the variation in AAO ( R2 = 0.256) over baseline ( R2 = 0.221), whereas the other 9 loci together contribute to 2.2% of the variation ( R2 = 0.242). Conclusions and Relevance We confirmed an association of APOE (OMIM107741) variants with AAO among affected participants with LOAD and observed novel associations of CR1 (OMIM 120620), BIN1 (OMIM 601248), and PICALM (OMIM 603025) with AAO . In contrast to earlier hypothetical modeling, we show that the combined effects of Alzheimer disease risk variants on AAO are on the scale of, but do not exceed, the APOE effect. While the aggregate effects of risk loci on AAO may be significant, additional genetic contributions to AAO are individually likely to be small.

171 citations

Journal ArticleDOI
TL;DR: CSF sTREM2 increased in early symptomatic stages of late-onset AD but, unexpectedly, was observed decreased at the earliest asymptomatic phase when only abnormal Aβ pathology but no tau pathology or neurodegeneration, is present.
Abstract: TREM2 is a transmembrane receptor that is predominantly expressed by microglia in the central nervous system. Rare variants in the TREM2 gene increase the risk for late-onset Alzheimer’s disease (AD). Soluble TREM2 (sTREM2) resulting from shedding of the TREM2 ectodomain can be detected in the cerebrospinal fluid (CSF) and is a surrogate measure of TREM2-mediated microglia function. CSF sTREM2 has been previously reported to increase at different clinical stages of AD, however, alterations in relation to Amyloid β-peptide (Aβ) deposition or additional pathological processes in the amyloid cascade (such as tau pathology or neurodegeneration) remain unclear. In the current cross-sectional study, we employed the biomarker-based classification framework recently proposed by the NIA-AA consensus guidelines, in combination with clinical staging, in order to examine the CSF sTREM2 alterations at early asymptomatic and symptomatic stages of AD. A cross-sectional study of 1027 participants of the Alzheimer’s Disease Imaging Initiative (ADNI) cohort, including 43 subjects carrying TREM2 rare genetic variants, was conducted to measure CSF sTREM2 using a previously validated enzyme-linked immunosorbent assay (ELISA). ADNI participants were classified following the A/T/N framework, which we implemented based on the CSF levels of Aβ1-42 (A), phosphorylated tau (T) and total tau as a marker of neurodegeneration (N), at different clinical stages defined by the clinical dementia rating (CDR) score. CSF sTREM2 differed between TREM2 variants, whereas the p.R47H variant had higher CSF sTREM2, p.L211P had lower CSF sTREM2 than non-carriers. We found that CSF sTREM2 increased in early symptomatic stages of late-onset AD but, unexpectedly, we observed decreased CSF sTREM2 levels at the earliest asymptomatic phase when only abnormal Aβ pathology (A+) but no tau pathology or neurodegeneration (TN-), is present. Aβ pathology (A) and tau pathology/neurodegeneration (TN) have differing associations with CSF sTREM2. While tau-related neurodegeneration is associated with an increase in CSF sTREM2, Aβ pathology in the absence of downstream tau-related neurodegeneration is associated with a decrease in CSF sTREM2.

171 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The workgroup sought to ensure that the revised criteria would be flexible enough to be used by both general healthcare providers without access to neuropsychological testing, advanced imaging, and cerebrospinal fluid measures, and specialized investigators involved in research or in clinical trial studies who would have these tools available.
Abstract: The National Institute on Aging and the Alzheimer's Association charged a workgroup with the task of revising the 1984 criteria for Alzheimer's disease (AD) dementia. The workgroup sought to ensure that the revised criteria would be flexible enough to be used by both general healthcare providers without access to neuropsychological testing, advanced imaging, and cerebrospinal fluid measures, and specialized investigators involved in research or in clinical trial studies who would have these tools available. We present criteria for all-cause dementia and for AD dementia. We retained the general framework of probable AD dementia from the 1984 criteria. On the basis of the past 27 years of experience, we made several changes in the clinical criteria for the diagnosis. We also retained the term possible AD dementia, but redefined it in a manner more focused than before. Biomarker evidence was also integrated into the diagnostic formulations for probable and possible AD dementia for use in research settings. The core clinical criteria for AD dementia will continue to be the cornerstone of the diagnosis in clinical practice, but biomarker evidence is expected to enhance the pathophysiological specificity of the diagnosis of AD dementia. Much work lies ahead for validating the biomarker diagnosis of AD dementia.

13,710 citations

Journal ArticleDOI
19 Jul 2002-Science
TL;DR: It has been more than 10 years since it was first proposed that the neurodegeneration in Alzheimer's disease (AD) may be caused by deposition of amyloid β-peptide in plaques in brain tissue and the rest of the disease process is proposed to result from an imbalance between Aβ production and Aβ clearance.
Abstract: It has been more than 10 years since it was first proposed that the neurodegeneration in Alzheimer9s disease (AD) may be caused by deposition of amyloid β-peptide (Aβ) in plaques in brain tissue. According to the amyloid hypothesis, accumulation of Aβ in the brain is the primary influence driving AD pathogenesis. The rest of the disease process, including formation of neurofibrillary tangles containing tau protein, is proposed to result from an imbalance between Aβ production and Aβ clearance.

12,652 citations

Journal ArticleDOI
TL;DR: There is growing evidence that aging involves, in addition, progressive changes in free radical-mediated regulatory processes that result in altered gene expression.
Abstract: At high concentrations, free radicals and radical-derived, nonradical reactive species are hazardous for living organisms and damage all major cellular constituents. At moderate concentrations, how...

9,131 citations