scispace - formally typeset
Search or ask a question
Author

John Q. Trojanowski

Bio: John Q. Trojanowski is an academic researcher from University of Pennsylvania. The author has contributed to research in topics: Alzheimer's disease & Dementia. The author has an hindex of 226, co-authored 1467 publications receiving 213948 citations. Previous affiliations of John Q. Trojanowski include Vanderbilt University & University of California, San Francisco.


Papers
More filters
Journal ArticleDOI
TL;DR: PP2A and PP2B (or closely related phosphatases) may regulate the phosphorylation state of adult tau isoforms in vivo, and the generation of PHF-tau in the AD brain may result from the abnormal inactivation of similar phosphatasing.

142 citations

Journal ArticleDOI
TL;DR: The view that different neurodegenerative diseases may have similar pathological mechanisms, and that these processes likely include DJ‐1, is extended to include tauopathies.
Abstract: Two novel mutations recently have been identified in the DJ-1 gene that cause a new form of autosomal recessive, early-onset parkinsonism. Because the pathological role of this protein is unknown, we examined the issue here and report the colocalization of DJ-1 protein within a subset of pathological tau inclusions in a diverse group of neurodegenerative disorders known as tauopathies. Our study extends the view that different neurodegenerative diseases may have similar pathological mechanisms, and that these processes likely include DJ-1.

142 citations

Journal ArticleDOI
TL;DR: It is indicated that α-syn is a prominent component of GCIs in MSA, and that GCIs and LBs may result from cell type specific conformational or post-translational permutations in α- syn.
Abstract: Although alpha-synuclein (alpha-syn) has been implicated as a major component of the abnormal filaments that form glial cytoplasmic inclusions (GCIs) in multiple system atrophy (MSA), it is uncertain if GCIs are homogenous and contain full-length alpha-syn. Since this has implications for hypotheses about the pathogenesis of GCIs, we used a novel panel of antibodies to defined regions throughout alpha-syn in immunohistochemical epitope mapping studies of GCIs in MSA brains. Although the immunostaining profile of GCIs with these antibodies was similar for all MSA brains, there were significant differences in the immunoreactivity of the alpha-syn epitopes detected in GCIs. Notably, carboxy-terminal alpha-syn epitopes were immunodominant in GCIs, but the entire panel of antibodies immunostained cortical Lewy bodies (LBs) in dementia with LBs brain with similar intensity. While the distribution of alpha-syn labeled GCIs paralleled that previously reported using silver stains, antibodies to carboxy-terminal alpha-syn epitopes revealed a previously undescribed burden of GCIs in the MSA hippocampal formation. Finally, Western blots demonstrated detergent insoluble monomeric and high-molecular weight alpha-syn species in GCI rich MSA cerebellar white matter. Collectively, these data indicate that alpha-syn is a prominent component of GCIs in MSA, and that GCIs and LBs may result from cell type specific conformational or post-translational permutations in alpha-syn.

141 citations

Journal ArticleDOI
TL;DR: Several MT-stabilizing compounds from the taxane and epothilone natural product families were examined to assess their membrane permeability and to determine whether they act as substrates or inhibitors of P-glycoprotein, and whether brain-penetrant compounds could stabilize mouse CNS MTs.

141 citations

Journal ArticleDOI
TL;DR: Measurements of CSF Aβ(1-42), t-τ, and p-τ(181) with analytically qualified immunoassays reliably reflect the neuropathologic hallmarks of AD in patients at the early predementia stage of the disease and even in presymptomatic patients.
Abstract: BACKGROUND: Over the past 2 decades, clinical studies have provided evidence that cerebrospinal fluid (CSF) amyloid β1–42 (Aβ1–42), total τ (t-τ), and τ phosphorylated at Thr181 (p-τ181) are reliable biochemical markers of Alzheimer disease (AD) neuropathology. CONTENT: In this review, we summarize the clinical performance and describe the major challenges for the analytical performance of the most widely used immunoassay platforms [based on ELISA or microbead-based multianalyte profiling (xMAP) technology] for the measurement of CSF AD biomarkers (Aβ1–42, t-τ, and p-τ181). With foundational immunoassay data providing the diagnostic and prognostic values of CSF AD biomarkers, the newly revised criteria for the diagnosis of AD include CSF AD biomarkers for use in research settings. In addition, it has been suggested that the selection of AD patients at the predementia stage by use of CSF AD biomarkers can improve the statistical power of clinical trial design. Owing to the lack of a replenishable and commutable human CSF-based standardized reference material (SRM) and significant differences across different immunoassay platforms, the diagnostic–prognostic cutpoints of CSF AD biomarker concentrations are not universal at this time. These challenges can be effectively met in the future, however, through collaborative ongoing standardization efforts to minimize the sources of analytical variability and to develop reference methods and SRMs. SUMMARY: Measurements of CSF Aβ1–42, t-τ, and p-τ181 with analytically qualified immunoassays reliably reflect the neuropathologic hallmarks of AD in patients at the early predementia stage of the disease and even in presymptomatic patients. Thus these CSF biomarker tests are useful for early diagnosis of AD, prediction of disease progression, and efficient design of drug intervention clinical trials.

141 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The workgroup sought to ensure that the revised criteria would be flexible enough to be used by both general healthcare providers without access to neuropsychological testing, advanced imaging, and cerebrospinal fluid measures, and specialized investigators involved in research or in clinical trial studies who would have these tools available.
Abstract: The National Institute on Aging and the Alzheimer's Association charged a workgroup with the task of revising the 1984 criteria for Alzheimer's disease (AD) dementia. The workgroup sought to ensure that the revised criteria would be flexible enough to be used by both general healthcare providers without access to neuropsychological testing, advanced imaging, and cerebrospinal fluid measures, and specialized investigators involved in research or in clinical trial studies who would have these tools available. We present criteria for all-cause dementia and for AD dementia. We retained the general framework of probable AD dementia from the 1984 criteria. On the basis of the past 27 years of experience, we made several changes in the clinical criteria for the diagnosis. We also retained the term possible AD dementia, but redefined it in a manner more focused than before. Biomarker evidence was also integrated into the diagnostic formulations for probable and possible AD dementia for use in research settings. The core clinical criteria for AD dementia will continue to be the cornerstone of the diagnosis in clinical practice, but biomarker evidence is expected to enhance the pathophysiological specificity of the diagnosis of AD dementia. Much work lies ahead for validating the biomarker diagnosis of AD dementia.

13,710 citations

Journal ArticleDOI
19 Jul 2002-Science
TL;DR: It has been more than 10 years since it was first proposed that the neurodegeneration in Alzheimer's disease (AD) may be caused by deposition of amyloid β-peptide in plaques in brain tissue and the rest of the disease process is proposed to result from an imbalance between Aβ production and Aβ clearance.
Abstract: It has been more than 10 years since it was first proposed that the neurodegeneration in Alzheimer9s disease (AD) may be caused by deposition of amyloid β-peptide (Aβ) in plaques in brain tissue. According to the amyloid hypothesis, accumulation of Aβ in the brain is the primary influence driving AD pathogenesis. The rest of the disease process, including formation of neurofibrillary tangles containing tau protein, is proposed to result from an imbalance between Aβ production and Aβ clearance.

12,652 citations

Journal ArticleDOI
TL;DR: There is growing evidence that aging involves, in addition, progressive changes in free radical-mediated regulatory processes that result in altered gene expression.
Abstract: At high concentrations, free radicals and radical-derived, nonradical reactive species are hazardous for living organisms and damage all major cellular constituents. At moderate concentrations, how...

9,131 citations