scispace - formally typeset
Search or ask a question
Author

John R. Miller

Bio: John R. Miller is an academic researcher from York University. The author has contributed to research in topics: Leaf area index & Red edge. The author has an hindex of 49, co-authored 173 publications receiving 11746 citations. Previous affiliations of John R. Miller include ASTRON & National Oceanic and Atmospheric Administration.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a method for minimizing the effect of leaf chlorophyll content on the prediction of green LAI was presented, and new algorithms that adequately predict the LAI of crop canopies.

1,915 citations

Journal ArticleDOI
TL;DR: In this paper, a combined modeling and indices-based approach is presented to predict the crop chlorophyll content from remote sensing data while minimizing LAI (vegetation parameter) influence and underlying soil background effects.

1,516 citations

Journal ArticleDOI
TL;DR: Study of the merit function in the numerical inversion showed that red edge optical indices used in the minimizing function such as R/sub 750//R/sub 710/ perform better than when all single spectral reflectance channels from hyper-spectral airborne CASI data are used, and in addition, the effect of shadows and LAI variation are minimized.
Abstract: Radiative transfer theory and modeling assumptions were applied at laboratory and field scales in order to study the link between leaf reflectance and transmittance and canopy hyper-spectral data for chlorophyll content estimation. This study was focused on 12 sites of Acer saccharum M. (sugar maple) in the Algoma Region, Canada, where field measurements, laboratory-simulation experiments, and hyper-spectral compact airborne spectrographic imager (CASI) imagery of 72 channels in the visible and near-infrared region and up to 1-m spatial resolution data were acquired in the 1997, 1998, and 1999 campaigns. A different set of 14 sites of the same species were used in 2000 for validation of methodologies. Infinite reflectance and canopy reflectance models were used to link leaf to canopy levels through radiative transfer simulation. The closed and dense (LAI>4) forest canopies of Acer saccharum M. used for this study, and the high spatial resolution reflectance data targeting crowns, allowed the use of optically thick simulation formulae and turbid-medium SAILH and MCRM canopy reflectance models for chlorophyll content estimation by scaling-up and by numerical model inversion approaches through coupling to the PROSPECT leaf radiative transfer model. Study of the merit function in the numerical inversion showed that red edge optical indices used in the minimizing function such as R/sub 750//R/sub 710/ perform better than when all single spectral reflectance channels from hyper-spectral airborne CASI data are used, and in addition, the effect of shadows and LAI variation are minimized.

603 citations

Journal ArticleDOI
TL;DR: In this article, a Li-Cor 1800-12 Integrating Sphere coupled with a 200 Am diameter single mode fiber to an Ocean Optics model USB2000 spectrometer was used for measuring the optical properties of reflectance and transmittance with a subsample of 605 leaves.

595 citations

Journal ArticleDOI
TL;DR: In this article, the authors found similar features that are related to air-pollution-induced forest decline and visible damage in both the red spruce of Vermont and the Norway spruce in Baden-Wuerttemberg, Germany.

366 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The operation and philosophy of the monitoring system, the precision and accuracy of the measuring radiometers, a brief description of the processing system, and access to the database are discussed.

6,535 citations

Journal ArticleDOI
TL;DR: This issue's collection of essays should help familiarize readers with this interesting new racehorse in the Machine Learning stable, and give a practical guide and a new technique for implementing the algorithm efficiently.
Abstract: My first exposure to Support Vector Machines came this spring when heard Sue Dumais present impressive results on text categorization using this analysis technique. This issue's collection of essays should help familiarize our readers with this interesting new racehorse in the Machine Learning stable. Bernhard Scholkopf, in an introductory overview, points out that a particular advantage of SVMs over other learning algorithms is that it can be analyzed theoretically using concepts from computational learning theory, and at the same time can achieve good performance when applied to real problems. Examples of these real-world applications are provided by Sue Dumais, who describes the aforementioned text-categorization problem, yielding the best results to date on the Reuters collection, and Edgar Osuna, who presents strong results on application to face detection. Our fourth author, John Platt, gives us a practical guide and a new technique for implementing the algorithm efficiently.

4,319 citations

Journal ArticleDOI
TL;DR: Developing spectral indices for prediction of leaf pigment content that are relatively insensitive to species and leaf structure variation and thus could be applied in larger scale remote-sensing studies without extensive calibration are developed.

2,660 citations

Journal ArticleDOI
TL;DR: This paper presents an overview of un Mixing methods from the time of Keshava and Mustard's unmixing tutorial to the present, including Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixed algorithms.
Abstract: Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.

2,373 citations