scispace - formally typeset
Search or ask a question
Author

John Reynolds

Other affiliations: Max Planck Society, ASTRON
Bio: John Reynolds is an academic researcher from Australia Telescope National Facility. The author has contributed to research in topics: Very-long-baseline interferometry & Pulsar. The author has an hindex of 42, co-authored 166 publications receiving 6355 citations. Previous affiliations of John Reynolds include Max Planck Society & ASTRON.


Papers
More filters
Journal ArticleDOI
20 Feb 2004-Science
TL;DR: The detection of the 2.8-second pulsar J0737–3039B as the companion to the 23-millisecond pulsars in a highly relativistic double neutron star system, allowing unprecedented tests of fundamental gravitational physics.
Abstract: The clocklike properties of pulsars moving in the gravitational fields of their unseen neutron-star companions have allowed unique tests of general relativity and provided evidence for gravitational radiation. We report here the detection of the 2.8-second pulsar J07373039B as the companion to the 23-millisecond pulsar J07373039A in a highly relativistic double neutron star system, allowing unprecedented tests of fundamental gravitational physics. We observed a short eclipse of J07373039A by J07373039B and orbital modulation of the flux density and the pulse shape of J07373039B, probably because of the influence of J07373039A’s energy flux on its magnetosphere. These effects will allow us to probe magneto-ionic properties of a pulsar magnetosphere. Double neutron star (DNS) binaries are rare, and only six such systems are known. How

829 citations

Journal ArticleDOI
24 Aug 2006-Nature
TL;DR: It is shown that XTE J1810 - 197 emits bright, narrow, highly linearly polarized radio pulses, observed at every rotation, thereby establishing that magnetars can be radio pulsars.
Abstract: Anomalous X-ray pulsars (AXPs) are slowly rotating neutron stars with very bright and highly variable X-ray emission that are believed to be powered by ultra-strong magnetic fields of >10(14) G, according to the 'magnetar' model. The radio pulsations that have been observed from more than 1,700 neutron stars with weaker magnetic fields have never been detected from any of the dozen known magnetars. The X-ray pulsar XTE J1810-197 was revealed (in 2003) as the first AXP with transient emission when its luminosity increased 100-fold from the quiescent level; a coincident radio source of unknown origin was detected one year later. Here we show that XTE J1810-197 emits bright, narrow, highly linearly polarized radio pulses, observed at every rotation, thereby establishing that magnetars can be radio pulsars. There is no evidence of radio emission before the 2003 X-ray outburst (unlike ordinary pulsars, which emit radio pulses all the time), and the flux varies from day to day. The flux at all radio frequencies is approximately equal--and at >20 GHz XTE J1810-197 is currently the brightest neutron star known. These observations link magnetars to ordinary radio pulsars, rule out alternative accretion models for AXPs, and provide a new window into the coronae of magnetars.

448 citations

Journal ArticleDOI
01 Mar 1995-Nature
TL;DR: In this paper, the authors reported high-resolution radio observations of a second Galactic superluminal radio source GRO J1655-40, which was detected as an X-ray transient on 27 July 1994.
Abstract: The recent discovery of radio components apparently moving away from a Galactic source of transient X-ray emission faster than the speed of light (superluminal motion) has identified a low-energy Galactic counterpart to quasars. Here we report high-resolution radio observations of a second Galactic superluminal radio source GRO J1655-40, which was detected as an X-ray transient on 27 July 1994. Our radio images reveal two components moving away from each other at an angular speed of 65 ± 5 mas d -1 , corresponding to superluminal motion at the estimated distance of 3–5 kpc. The 12-day delay between the X-ray and radio outbursts suggests that the ejection of material at relativistic speeds occurs during a stable phase of accretion onto a black hole, which follows an unstable phase with a high accretion rate.

309 citations

Journal ArticleDOI
TL;DR: The Deep X-Ray Radio Blazar Survey (DXRBS) as discussed by the authors is a survey of flat-spectrum radio-loud quasars (FSRQs) and BL Lacertae objects.
Abstract: We have undertaken a survey, the Deep X-Ray Radio Blazar Survey (DXRBS), of archived, pointed ROSAT Position Sensitive Proportional Counter data for blazars by correlating the ROSAT WGACAT database with several publicly available radio catalogs, restricting our candidate list to serendipitous flat radio spectrum sources (αr ≤ 0.70, where Sν ∝ ν). We discuss our survey methods, identification procedure, and first results. Our survey is found to be ~95% efficient at finding flat-spectrum radio-loud quasars (FSRQs; 59 of our first 85 identifications) and BL Lacertae objects (22 of our first 85 identifications), a figure that is comparable to or greater than that achieved by other radio and X-ray survey techniques. The identifications presented here show that all previous samples of blazars (even when taken together) did not representatively survey the blazar population, missing critical regions of (LX, LR) parameter space within which large fractions of the blazar population lie. Particularly important is the identification of a large population of FSRQs (25% of DXRBS FSRQs) with ratios of X-ray to radio luminosity 10-6 (αrx 0.78). In addition, as a result of our greater sensitivity, the DXRBS has already more than doubled the number of FSRQs in complete samples with 5 GHz (radio) luminosities between 1031.5 and 1033.5 ergs s-1 Hz-1, and fills in the region of parameter space between X-ray–selected and radio-selected samples of BL Lac objects. The DXRBS is the very first sample to contain statistically significant numbers of blazars at low luminosities, approaching what should be the lower end of the FSRQ luminosity function.

229 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate that simple algorithms to correct for interstellar dispersion can attenuate signals of interest to pulsar timing arrays, such as that induced by a gravitational wave background.
Abstract: Signals from radio pulsars show a wavelength-dependent delay due to dispersion in the interstellar plasma. At a typical observing wavelength, this delay can vary by tens of microseconds on 5-yr time-scales, far in excess of signals of interest to pulsar timing arrays, such as that induced by a gravitational wave background. Measurement of these delay variations is not only crucial for the detection of such signals, but also provides an unparalleled measurement of the turbulent interstellar plasma at astronomical unit (au) scales. In this paper we demonstrate that without consideration of wavelength-independent red noise, ‘simple’ algorithms to correct for interstellar dispersion can attenuate signals of interest to pulsar timing arrays. We present a robust method for this correction, which we validate through simulations, and apply it to observations from the Parkes Pulsar Timing Array. Correction for dispersion variations comes at a cost of increased band-limited white noise. We discuss scheduling to minimize this additional noise, and factors, such as scintillation, that can exacerbate the problem. Comparison with scintillation measurements confirms previous results that the spectral exponent of electron density variations in the interstellar medium often appears steeper than expected. We also find a discrete change in dispersion measure of PSR J1603−7202 of ∼2 × 10^(−3) cm^(−3) pc for about 250 d. We speculate that this has a similar origin to the ‘extreme scattering events’ seen in other sources. In addition, we find that four pulsars show a wavelength-dependent annual variation, indicating a persistent gradient of electron density on an au spatial scale, which has not been reported previously.

224 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions.
Abstract: The combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions. By combining the WMAP data with the latest distance measurements from the baryon acoustic oscillations (BAO) in the distribution of galaxies and the Hubble constant (H0) measurement, we determine the parameters of the simplest six-parameter ΛCDM model. The power-law index of the primordial power spectrum is ns = 0.968 ± 0.012 (68% CL) for this data combination, a measurement that excludes the Harrison–Zel’dovich–Peebles spectrum by 99.5% CL. The other parameters, including those beyond the minimal set, are also consistent with, and improved from, the five-year results. We find no convincing deviations from the minimal model. The seven-year temperature power spectrum gives a better determination of the third acoustic peak, which results in a better determination of the redshift of the matter-radiation equality epoch. Notable examples of improved parameters are the total mass of neutrinos, � mν < 0.58 eV (95% CL), and the effective number of neutrino species, Neff = 4.34 +0.86 −0.88 (68% CL), which benefit from better determinations of the third peak and H0. The limit on a constant dark energy equation of state parameter from WMAP+BAO+H0, without high-redshift Type Ia supernovae, is w =− 1.10 ± 0.14 (68% CL). We detect the effect of primordial helium on the temperature power spectrum and provide a new test of big bang nucleosynthesis by measuring Yp = 0.326 ± 0.075 (68% CL). We detect, and show on the map for the first time, the tangential and radial polarization patterns around hot and cold spots of temperature fluctuations, an important test of physical processes at z = 1090 and the dominance of adiabatic scalar fluctuations. The seven-year polarization data have significantly improved: we now detect the temperature–E-mode polarization cross power spectrum at 21σ , compared with 13σ from the five-year data. With the seven-year temperature–B-mode cross power spectrum, the limit on a rotation of the polarization plane due to potential parity-violating effects has improved by 38% to Δα =− 1. 1 ± 1. 4(statistical) ± 1. 5(systematic) (68% CL). We report significant detections of the Sunyaev–Zel’dovich (SZ) effect at the locations of known clusters of galaxies. The measured SZ signal agrees well with the expected signal from the X-ray data on a cluster-by-cluster basis. However, it is a factor of 0.5–0.7 times the predictions from “universal profile” of Arnaud et al., analytical models, and hydrodynamical simulations. We find, for the first time in the SZ effect, a significant difference between the cooling-flow and non-cooling-flow clusters (or relaxed and non-relaxed clusters), which can explain some of the discrepancy. This lower amplitude is consistent with the lower-than-theoretically expected SZ power spectrum recently measured by the South Pole Telescope Collaboration.

11,309 citations

Journal ArticleDOI
TL;DR: The NRAO VLA Sky Survey (NVSS) covers the sky north of J2000 at 1.4 GHz as discussed by the authors, including a set of 2326 4?? 4? continuum cubes with three planes containing Stokes I, Q, and U images plus a catalog of almost 2? 106 discrete sources stronger than S 2.5 mJy.
Abstract: ?????The NRAO VLA Sky Survey (NVSS) covers the sky north of J2000.0 ? = -40? (82% of the celestial sphere) at 1.4 GHz. The principal data products are (1) a set of 2326 4? ? 4? continuum cubes with three planes containing Stokes I, Q, and U images plus (2) a catalog of almost 2 ? 106 discrete sources stronger than S ? 2.5 mJy. The images all have ? = 45'' FWHM resolution and nearly uniform sensitivity. Their rms brightness fluctuations are ? ? 0.45 mJy beam-1 ? 0.14 K (Stokes I) and ? ? 0.29 mJy beam-1 ? 0.09 K (Stokes Q and U). The rms uncertainties in right ascension and declination vary from 1'' for the N ? 4 ? 105 sources stronger than 15 mJy to 7'' at the survey limit. The NVSS was made as a service to the astronomical community. All data products, user software, and updates are being released via the World Wide Web as soon as they are produced and verified.

5,441 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of recent work on modified theories of gravity and their cosmological consequences can be found in this article, where the authors provide a reference tool for researchers and students in cosmology and gravitational physics, as well as a selfcontained, comprehensive and up-to-date introduction to the subject as a whole.

3,674 citations

Journal ArticleDOI
TL;DR: Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, the Nordtvedt effect in lunar motion, and frame-dragging.
Abstract: The status of experimental tests of general relativity and of theoretical frameworks for analyzing them is reviewed and updated. Einstein’s equivalence principle (EEP) is well supported by experiments such as the Eotvos experiment, tests of local Lorentz invariance and clock experiments. Ongoing tests of EEP and of the inverse square law are searching for new interactions arising from unification or quantum gravity. Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, the Nordtvedt effect in lunar motion, and frame-dragging. Gravitational wave damping has been detected in an amount that agrees with general relativity to better than half a percent using the Hulse-Taylor binary pulsar, and a growing family of other binary pulsar systems is yielding new tests, especially of strong-field effects. Current and future tests of relativity will center on strong gravity and gravitational waves.

3,394 citations