scispace - formally typeset
Search or ask a question
Author

John T. Groves

Other affiliations: Princeton University
Bio: John T. Groves is an academic researcher from University of Michigan. The author has contributed to research in topics: Catalysis & Porphyrin. The author has an hindex of 20, co-authored 46 publications receiving 3803 citations. Previous affiliations of John T. Groves include Princeton University.
Topics: Catalysis, Porphyrin, Hydroxylation, Chromium, Amide

Papers
More filters
Journal ArticleDOI
TL;DR: A very large isotope effect and a significant amount of epimerization for the hydroxylation of norbornane by cytochrome P-450, suggest an initial hydrogen abstraction to give a carbon radical intermediate.

489 citations

Journal ArticleDOI
TL;DR: Epoxydation asymetrique d'olefines prochirales par des porphyrines de fer chirales and par des composes iodosyles.
Abstract: Epoxydation asymetrique d'olefines prochirales par des porphyrines de fer chirales et par des composes iodosyles

416 citations

Journal ArticleDOI
TL;DR: Le dioxo(tetramesitylporphyrinato) ruthenium(VI) catalyse l'epoxydation des olefines (cyclooctene, cis-and trans-β-methylstyrene, norbornene) a temperature and pression ambiantes
Abstract: Le dioxo(tetramesitylporphyrinato) ruthenium(VI) catalyse l'epoxydation des olefines (cyclooctene, cis- et trans-β-methylstyrene, norbornene) a temperature et pression ambiantes

394 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, it was shown that the same alkylhydridoplatinum(IV) complex is the intermediate in the reaction of ethane with platinum(II) σ-complexes.
Abstract: ion. The oxidative addition mechanism was originally proposed22i because of the lack of a strong rate dependence on polar factors and on the acidity of the medium. Later, however, the electrophilic substitution mechanism also was proposed. Recently, the oxidative addition mechanism was confirmed by investigations into the decomposition and protonolysis of alkylplatinum complexes, which are the reverse of alkane activation. There are two routes which operate in the decomposition of the dimethylplatinum(IV) complex Cs2Pt(CH3)2Cl4. The first route leads to chloride-induced reductive elimination and produces methyl chloride and methane. The second route leads to the formation of ethane. There is strong kinetic evidence that the ethane is produced by the decomposition of an ethylhydridoplatinum(IV) complex formed from the initial dimethylplatinum(IV) complex. In D2O-DCl, the ethane which is formed contains several D atoms and has practically the same multiple exchange parameter and distribution as does an ethane which has undergone platinum(II)-catalyzed H-D exchange with D2O. Moreover, ethyl chloride is formed competitively with H-D exchange in the presence of platinum(IV). From the principle of microscopic reversibility it follows that the same ethylhydridoplatinum(IV) complex is the intermediate in the reaction of ethane with platinum(II). Important results were obtained by Labinger and Bercaw62c in the investigation of the protonolysis mechanism of several alkylplatinum(II) complexes at low temperatures. These reactions are important because they could model the microscopic reverse of C-H activation by platinum(II) complexes. Alkylhydridoplatinum(IV) complexes were observed as intermediates in certain cases, such as when the complex (tmeda)Pt(CH2Ph)Cl or (tmeda)PtMe2 (tmeda ) N,N,N′,N′-tetramethylenediamine) was treated with HCl in CD2Cl2 or CD3OD, respectively. In some cases H-D exchange took place between the methyl groups on platinum and the, CD3OD prior to methane loss. On the basis of the kinetic results, a common mechanism was proposed to operate in all the reactions: (1) protonation of Pt(II) to generate an alkylhydridoplatinum(IV) intermediate, (2) dissociation of solvent or chloride to generate a cationic, fivecoordinate platinum(IV) species, (3) reductive C-H bond formation, producing a platinum(II) alkane σ-complex, and (4) loss of the alkane either through an associative or dissociative substitution pathway. These results implicate the presence of both alkane σ-complexes and alkylhydridoplatinum(IV) complexes as intermediates in the Pt(II)-induced C-H activation reactions. Thus, the first step in the alkane activation reaction is formation of a σ-complex with the alkane, which then undergoes oxidative addition to produce an alkylhydrido complex. Reversible interconversion of these intermediates, together with reversible deprotonation of the alkylhydridoplatinum(IV) complexes, leads to multiple H-D exchange

2,505 citations

Journal ArticleDOI
TL;DR: Alkane hydroxylation proceeds by TSR,70-72,120 in which the HS mechanism is truly stepwise with a finite lifetime for the radical intermediate, whereas the LS mechanism is effectively concerted with an ultrashort lifetime forThe radical intermediate.
Abstract: ion phase that leads to an alkyl radical coordinated to the iron-hydroxo complex by a weak OH---C hydrogen bond, labeled as CI; (ii) an alkyl (or OH) rotation phase whereby the alkyl group achieves a favorable orientation for rebound; and (iii) a rebound phase that leads to C-O bond making and the ferric-alcohol complexes, 4,2P. The two profiles remain close in energy throughout the first two phases and then bifurcate. Whereas the HS state exhibits a significant barrier and a genuine TS for rebound, in the LS state, once the right orientation of the alkyl group is achieved, the LS rebound proceeds in a virtually barrier-free fashion to the alcohol. As such, alkane hydroxylation proceeds by TSR,70-72,120 in which the HS mechanism is truly stepwise with a finite lifetime for the radical intermediate, whereas the LS mechanism is effectively concerted with an ultrashort lifetime for the radical intermediate. Subsequent studies of ethane and camphor hydroxylation by the Yoshizawa group117,181-183 arrived at basically the same conclusion, that the mechanism is typified by TSR. The differences between the results of Shaik et al.130,173,177-180 and Yoshizawa et al.117,181-183 were rationalized recently71,72 and shown to arise owing to technical problems and the choice of the mercaptide ligand,117,181-183 which is a powerful electron donor and is too far from the representation of cysteine in the protein environment. The most recent study of camphor hydroxylation, which was done at a higher quality,117 converged to the picture reported by Shaik et al.130,173,177-180 and shows a stepwise HS process with a barrier of more than 3 kcal/mol for C-O bond formation by rebound of the camphoryl radical vis-à-vis an effectively concerted LS process for which this barrier is 0.7 kcal mol-1 and is the rotational barrier for reaching the rebound position. By referring to Figure 21, it is possible to rationalize the clock data of Newcomb in a simple manner. The apparent lifetimes are based on the assumption that there is a single state that leads to the reaction, such that the radical lifetime can be quantitated from the rate constant of free radical rearrangement and the ratio of rearranged to unrearranged alcohol product. However, in TSR, the rearranged (R) product is formed only/mainly on the HS surface, while the unrearranged (U) product is formed mainly on Figure 20. Formal descriptions of iron(III)-peroxo, iron(III)-hydroperoxo, and iron(V)-oxo species with indication of the negative charges. The roles “electrophile” or “nucleophile” are assigned according to the charge type. Reprinted with permission from ref 7. Copyright 2000 Springer-Verlag Heidelberg. 3964 Chemical Reviews, 2004, Vol. 104, No. 9 Meunier et al.

2,002 citations

Journal ArticleDOI
TL;DR: This review will concentrate on findings with P-450cam of the Pseudomonas putida camphor-5-exo-hydroxylase, and attention will be drawn to parallel and contrasting examples from other P- 450s as appropriate.
Abstract: Two decades have passed since the discovery in liver microsomes of a haemprotein that forms a reduced-CO complex with the absorptive maximum of the Soret at 450 nm (Klingenberg, 1958; Garfinkel, 1958) and the identification of this protein as a new cytochrome: pigment cytochrome, P-450 (Omura and Sato, 1962, 1964a). In the intervening years, the study of cytochrome P-450 dependent monoxygenases has expanded exponentially. From the first crude attempts to solubilise a P-450 (Omura and Sato, 1963, 1964b) to the determination of the primary, secondary, and tertiary structure of cytochrome P-450cam by amino acid sequencing (Haniu et al., 1982a,b) and x-ray crystallography (Poulos et al., 1984) our understanding of this unique family of proteins has been advancing on all fronts. Since, perhaps, the greatest understanding of the structure and mechanism of P-450s has come from concentrated study of P-450cam of the Pseudomonas putida camphor-5-exo-hydroxylase, this review will concentrate on findings with P-450cam; attention will be drawn to parallel and contrasting examples from other P-450s as appropriate.

1,721 citations