scispace - formally typeset
Search or ask a question
Author

John W. Cahn

Bio: John W. Cahn is an academic researcher from National Institute of Standards and Technology. The author has contributed to research in topics: Grain boundary & Surface energy. The author has an hindex of 64, co-authored 175 publications receiving 39642 citations. Previous affiliations of John W. Cahn include Massachusetts Institute of Technology & University of Cambridge.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, it was shown that the thickness of the interface increases with increasing temperature and becomes infinite at the critical temperature Tc, and that at a temperature T just below Tc the interfacial free energy σ is proportional to (T c −T) 3 2.
Abstract: It is shown that the free energy of a volume V of an isotropic system of nonuniform composition or density is given by : NV∫V [f 0(c)+κ(▿c)2]dV, where NV is the number of molecules per unit volume, ▿c the composition or density gradient, f 0 the free energy per molecule of a homogeneous system, and κ a parameter which, in general, may be dependent on c and temperature, but for a regular solution is a constant which can be evaluated. This expression is used to determine the properties of a flat interface between two coexisting phases. In particular, we find that the thickness of the interface increases with increasing temperature and becomes infinite at the critical temperature Tc , and that at a temperature T just below Tc the interfacial free energy σ is proportional to (T c −T) 3 2 . The predicted interfacial free energy and its temperature dependence are found to be in agreement with existing experimental data. The possibility of using optical measurements of the interface thickness to provide an additional check of our treatment is briefly discussed.

8,720 citations

Journal ArticleDOI
TL;DR: In this article, a metallic solid with long-range orientational order, but with icosahedral point group symmetry, which is inconsistent with lattice translations, was observed and its diffraction spots are as sharp as those of crystals but cannot be indexed to any Bravais lattice.
Abstract: We have observed a metallic solid (Al-14-at.%-Mn) with long-range orientational order, but with icosahedral point group symmetry, which is inconsistent with lattice translations. Its diffraction spots are as sharp as those of crystals but cannot be indexed to any Bravais lattice. The solid is metastable and forms from the melt by a first-order transition.

5,702 citations

Journal ArticleDOI
TL;DR: In this article, the stability of a solid solution to all infinitesimal composition fluctuations is considered, taking surface tension and elastic energy into account, and it is found that for infinite isotropic solids, free from imperfections, the spinodal marks the limit of metastability to such fluctuations only if there is no change in molar volume with composition.

2,762 citations

Journal ArticleDOI
TL;DR: In this article, the saddle point in the expression derived in Paper I (see reference 8) for the free energy of a nonuniform system was used to derive the properties of a critical nucleus in a two-component metastable fluid.
Abstract: By finding the saddle point in the expression derived in Paper I (see reference 8) for the free energy of a nonuniform system, we have derived the properties of a critical nucleus in a two‐component metastable fluid.At very low supersaturations, we find that the properties of the nucleus approach those predicted by the classical theory that assumes the nucleus to be homogeneous with an interfacial energy that does not vary with curvature. However, with increasing supersaturation, the following changes occur in the properties of the critical nucleus. (a) The work required for its formation becomes progressively less than that given by the classical theory, and approaches continuously to zero at the spinodal. (b) The interface with the exterior phase becomes more diffuse until eventually no part of the nucleus is even approximately homogeneous. (c) The composition at the center of the nucleus approaches that of the exterior phase. (d) The radius and excess concentration in the nucleus at first decrease, the...

1,607 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the most characteristic properties of spin glass systems are described, and related phenomena in other glassy systems (dielectric and orientational glasses) are mentioned, and a review summarizes recent developments in the theory of spin glasses, as well as pertinent experimental data.
Abstract: This review summarizes recent developments in the theory of spin glasses, as well as pertinent experimental data. The most characteristic properties of spin glass systems are described, and related phenomena in other glassy systems (dielectric and orientational glasses) are mentioned. The Edwards-Anderson model of spin glasses and its treatment within the replica method and mean-field theory are outlined, and concepts such as "frustration," "broken replica symmetry," "broken ergodicity," etc., are discussed. The dynamic approach to describing the spin glass transition is emphasized. Monte Carlo simulations of spin glasses and the insight gained by them are described. Other topics discussed include site-disorder models, phenomenological theories for the frozen phase and its excitations, phase diagrams in which spin glass order and ferromagnetism or antiferromagnetism compete, the Ne\'el model of superparamagnetism and related approaches, and possible connections between spin glasses and other topics in the theory of disordered condensed-matter systems.

3,926 citations

Journal ArticleDOI
TL;DR: In this article, the stability of a solid solution to all infinitesimal composition fluctuations is considered, taking surface tension and elastic energy into account, and it is found that for infinite isotropic solids, free from imperfections, the spinodal marks the limit of metastability to such fluctuations only if there is no change in molar volume with composition.

2,762 citations

Journal ArticleDOI
TL;DR: In this article, a unified mathematical theory is presented that takes advantage of the disparity of the length scales and is based on the asymptotic procedure of reduction of the full set of governing equations and boundary conditions to a simplified, highly nonlinear, evolution equation or to a set of equations.
Abstract: Macroscopic thin liquid films are entities that are important in biophysics, physics, and engineering, as well as in natural settings. They can be composed of common liquids such as water or oil, rheologically complex materials such as polymers solutions or melts, or complex mixtures of phases or components. When the films are subjected to the action of various mechanical, thermal, or structural factors, they display interesting dynamic phenomena such as wave propagation, wave steepening, and development of chaotic responses. Such films can display rupture phenomena creating holes, spreading of fronts, and the development of fingers. In this review a unified mathematical theory is presented that takes advantage of the disparity of the length scales and is based on the asymptotic procedure of reduction of the full set of governing equations and boundary conditions to a simplified, highly nonlinear, evolution equation or to a set of equations. As a result of this long-wave theory, a mathematical system is obtained that does not have the mathematical complexity of the original free-boundary problem but does preserve many of the important features of its physics. The basics of the long-wave theory are explained. If, in addition, the Reynolds number of the flow is not too large, the analogy with Reynolds's theory of lubrication can be drawn. A general nonlinear evolution equation or equations are then derived and various particular cases are considered. Each case contains a discussion of the linear stability properties of the base-state solutions and of the nonlinear spatiotemporal evolution of the interface (and other scalar variables, such as temperature or solute concentration). The cases reducing to a single highly nonlinear evolution equation are first examined. These include: (a) films with constant interfacial shear stress and constant surface tension, (b) films with constant surface tension and gravity only, (c) films with van der Waals (long-range molecular) forces and constant surface tension only, (d) films with thermocapillarity, surface tension, and body force only, (e) films with temperature-dependent physical properties, (f) evaporating/condensing films, (g) films on a thick substrate, (h) films on a horizontal cylinder, and (i) films on a rotating disc. The dynamics of the films with a spatial dependence of the base-state solution are then studied. These include the examples of nonuniform temperature or heat flux at liquid-solid boundaries. Problems which reduce to a set of nonlinear evolution equations are considered next. Those include (a) the dynamics of free liquid films, (b) bounded films with interfacial viscosity, and (c) dynamics of soluble and insoluble surfactants in bounded and free films. The spreading of drops on a solid surface and moving contact lines, including effects of heat and mass transport and van der Waals attractions, are then addressed. Several related topics such as falling films and sheets and Hele-Shaw flows are also briefly discussed. The results discussed give motivation for the development of careful experiments which can be used to test the theories and exhibit new phenomena.

2,689 citations