scispace - formally typeset
Search or ask a question
Author

John W. Delano

Bio: John W. Delano is an academic researcher from University at Albany, SUNY. The author has contributed to research in topics: Regolith & Geology of the Moon. The author has an hindex of 28, co-authored 69 publications receiving 2349 citations. Previous affiliations of John W. Delano include Rensselaer Polytechnic Institute & Australian National University.


Papers
More filters
Journal ArticleDOI
TL;DR: The examination of glasses from all of the Apollo landing sites has led to the identification of 25 groups of pristine glass as mentioned in this paper and the nickel found in these glasses is shown to be indigenous, not meteoritic contamination, and to be correlated with Mg.
Abstract: The examination of glasses from all of the Apollo landing sites has led to the identification of 25 groups of pristine glass. The nickel found in these glasses is shown to be indigenous, not meteoritic contamination, and to be correlated with Mg. Chemical data indicate that these glasses are more suitable for primary magma than most crystalline mare basalts. In addition, these pristine glasses support the view that assimilative processes involving two cumulative systems in the differentiated mantle operated during mare petrogenesis. Two linear arrays found among the chemistries of the glasses attest to the existence of these interactions. Data suggest that these cumulate components in the mantle continue for 1000 km (laterally) and therefore are likely to be products of a magma ocean that existed early in lunar history.

373 citations

Journal ArticleDOI
TL;DR: The history of the oxidation state in the Earth's mantle has been constrained using the whole-rock abundances of Cr and V inancient volcanics, and the composition of Cr-rich spinels in ancient volcanics as mentioned in this paper.
Abstract: The history of the oxidation state in the Earth's mantle has beenconstrained using (a) the whole-rock abundances of Cr and V inancient volcanics, and (b) the composition of Cr-rich spinels in ancient volcanics. Results indicate that the Earth's mantle hasbeen at-or-near its current oxidation state (±0.5 log-unitfO2) since at least 3600 Ma, and probably since at least 3960 Ma. Volatiles released into the Earth's atmosphere by high-temperature (T ≥ 1300 K) volcanism during this time have been dominated by H2O, CO2, and SO2. This blend ofvolatiles is known to provide smaller yields of prebiotic, organic molecules by atmospheric and surface processes than gasmixtures containing higher concentrations of reduced species suchas H2, CO, and H2S (e.g., Miller, 1998; Zolotov and Shock, 2000). The results discussed in this article independentlysupport the conclusion of Canil (1997, 1999). f the atmosphere was reducing (e.g., CH4, H2, H2S, NH3, CO) at any time during the last ∼3900 Ma,high-temperature volcanic outgassing was not the cause of it.

227 citations

Journal ArticleDOI
TL;DR: It was noted that noncatalytic montmorillonites have a higher negative charge on their platelets that is due mainly to the natural substitution of the tetravalent and trivalent elements in the montMorillonite lattice with trivalents and divalent metal ions, respectively.
Abstract: The montmorillonite clay-catalyzed reactions of nucleotides generate oligomers as long as 50-mers. The extent of catalysis depends on the magnitude of the negative charge on the montmorillonite lattice and the number of cations associated with it. When cations in raw montmorillonites are replaced by sodium ions, the resulting Na(+)-montmorillonite does not catalyze oligomer formation because they saturate the interlayers between the platelets of montmorillonites, which blocks the binding of the activated monomers. Treating the montmorillonite with dilute hydrochloric acid replaces the cations on the raw montmorillonite with protons. The protonated montmorillonite, titrated to pH 6-7, serves as a catalyst for the formation of RNA oligomers. The titration does not add sufficient sodium ions to the interlayers of the montmorillonite platelets to prevent the activated monomer from entering. It was noted that noncatalytic montmorillonites have a higher negative charge on their platelets that is due mainly to the natural substitution of the tetravalent and trivalent elements in the montmorillonite lattice with trivalent and divalent metal ions, respectively. The larger negative charge on these montmorillonites was demonstrated by the almost 2-fold greater amounts of sodium hydroxide needed to titrate noncatalytic montmorillonites as compared to the catalytic montmorillonites. Adsorption isotherms established that the equilibrium binding is strongest for ImpA and weakest for ImpU. Of the 22 montmorillonites investigated, 12 were catalysts. This research provides insight into the mechanism of the catalytic process.

110 citations

Journal ArticleDOI
TL;DR: In this paper, a technique for the determination of intrinsic oxygen fugacities of single and polyphase geological samples with solid ZrO2, oxygen-specific electrolytes is described.

95 citations

Journal ArticleDOI
TL;DR: In this article, compositional properties of volcanic glasses from the Apollo 11, 14, 15 and 16 landing sites are examined and implications of the results for mare basalt petrogenesis and deep lunar structures are discussed.

95 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a regular solution-type thermodynamic model for twelve-component silicate liquids in the system SiO2-TiO 2-Al 2O3-Fe2O 3-Cr2O3 -FeO-MgO-CaO-Na2O-K 2O-P2O5-H2O is calibrated.
Abstract: A revised regular solution-type thermodynamic model for twelve-component silicate liquids in the system SiO2-TiO2-Al2O3-Fe2O3-Cr2O3-FeO-MgO-CaO-Na2O-K2O-P2O5-H2O is calibrated. The model is referenced to previously published standard state thermodynamic properties and is derived from a set of internally consistent thermodynamic models for solid solutions of the igneous rock forming minerals, including: (Mg,Fe2+,Ca)-olivines, (Na,Mg,Fe2+,Ca)M2 (Mg,Fe2+, Ti, Fe3+, Al)M1 (Fe3+, Al,Si)2TETO6-pyroxenes, (Na,Ca,K)-feldspars, (Mg,Fe2+) (Fe3+, Al, Cr)2O4-(Mg,Fe2+)2 TiO4 spinels and (Fe2+, Mg, Mn2+)TiO3-Fe2O3 rhombohedral oxides. The calibration utilizes over 2,500 experimentally determined compositions of silicate liquids coexisting at known temperatures, pressures and oxygen fugacities with apatite ±feldspar ±leucite ±olivine ±pyroxene ±quartz ±rhombohedral oxides ±spinel ±whitlockite ±water. The model is applicable to natural magmatic compositions (both hydrous and anhydrous), ranging from potash ankaratrites to rhyolites, over the temperature (T) range 900°–1700°C and pressures (P) up to 4 GPa. The model is implemented as a software package (MELTS) which may be used to simulate igneous processes such as (1) equilibrium or fractional crystallization, (2) isothermal, isenthalpic or isochoric assimilation, and (3) degassing of volatiles. Phase equilibria are predicted using the MELTS package by specifying bulk composition of the system and either (1) T and P, (2) enthalpy (H) and P, (3) entropy (S) and P, or (4) T and volume (V). Phase relations in systems open to oxygen are determined by directly specifying the fo2 or the T-P-fo2 (or equivalently H-P-fo2, S-P-fo2, T-V-fo2) evolution path. Calculations are performed by constrained minimization of the appropriate thermodynamic potential. Compositions and proportions of solids and liquids in the equilibrium assemblage are computed.

2,614 citations

Journal ArticleDOI
TL;DR: The composition of chromian spinels in alpine-type peridotites has a large reciprocal range of Cr and Al, with increasing Cr# (Cr/(Cr+Al)) reflecting increasing degrees of partial melting in the mantle as mentioned in this paper.
Abstract: The composition of chromian spinel in alpine-type peridotites has a large reciprocal range of Cr and Al, with increasing Cr# (Cr/(Cr+Al)) reflecting increasing degrees of partial melting in the mantle. Using spinel compositions, alpine-type peridotites can be divided into three groups. Type I peridotites and associated volcanic rocks contain spinels with Cr# 0.60, and Type II peridotites and volcanics are a transitional group and contain spinels spanning the full range of spinel compositions in Type I and Type II peridotites. Spinels in abyssal peridotites lie entirely within the Type I spinel field, making ophiolites with Type I alpine-type peridotites the most likely candidates for sections of ocean lithosphere formed at a midocean ridge. The only modern analogs for Type III peridotites and associated volcanic rocks are found in arc-related volcanic and intrusive rocks, continental intrusive assemblages, and oceanic plateau basalts. We infer a sub-volcanic arc petrogenesis for most Type III alpine-type peridotites. Type II alpine-type peridotites apparently reflect composite origins, such as the formation of an island-arc on ocean crust, resulting in large variations in the degree and provenance of melting over relatively short distances. The essential difference between Type I and Type III peridotites appears to be the presence or absence of diopside in the residue at the end of melting.

1,884 citations

Journal ArticleDOI
TL;DR: A review of existing geothermometers and geobarometers, and a presentation of approximately 30 new models, including a new plagioclase-liquid hygrometer, can be found in this paper.
Abstract: Knowledge of temperature and pressure, however qualitative, has been central to our views of geology since at least the early 19th century. In 1822, for example, Charles Daubeny presented what may be the very first “Geological Thermometer,” comparing temperatures of various geologic processes (Torrens 2006). Daubeny (1835) may even have been the first to measure the temperature of a lava flow, by laying a thermometer on the top of a flow at Vesuvius—albeit several months following the eruption, after intervening rain (his estimate was 390°F). In any case, pressure ( P ) and temperature ( T ) estimation lie at the heart of fundamental questions: How hot is Earth, and at what rate has the planet cooled. Are volcanoes the products of thermally driven mantle plumes? Where are magmas stored, and how are they transported to the surface—and how do storage and transport relate to plate tectonics? Well-calibrated thermometers and barometers are essential tools if we are to fully appreciate the driving forces and inner workings of volcanic systems. This chapter presents methods to estimate the P-T conditions of volcanic and other igneous processes. The coverage includes a review of existing geothermometers and geobarometers, and a presentation of approximately 30 new models, including a new plagioclase-liquid hygrometer. Our emphasis is on experimentally calibrated “thermobarometers,” based on analytic expressions using P or T as dependent variables. For numerical reasons (touched on below) such expressions will always provide the most accurate means of P-T estimation, and are also most easily employed. Analytical expressions also allow error to be ascertained; in the absence of estimates of error, P-T estimates are nearly meaningless. This chapter is intended to complement the chapters by Anderson et al. (2008), who cover granitic systems, and by Blundy and Cashman (2008) and Hansteen and Klugel (2008), who consider additional methods …

1,785 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the Precambrian history of atmospheric oxygen is presented, starting with a brief discussion of the possible nature and magnitude of life before the evolution of oxygenic photosynthesis, followed by a summary of the various lines of evidence constraining oxygen levels through time.
Abstract: ▪ Abstract This paper reviews the Precambrian history of atmospheric oxygen, beginning with a brief discussion of the possible nature and magnitude of life before the evolution of oxygenic photosynthesis. This is followed by a summary of the various lines of evidence constraining oxygen levels through time, resulting in a suggested history of atmospheric oxygen concentrations. Also reviewed are the various processes regulating oxygen concentrations, and several models of Precambrian oxygen evolution are presented. A sparse geologic record, combined with uncertainties as to its interpretation, yields only a fragmentary and imprecise reading of atmospheric oxygen evolution. Nevertheless, oxygen levels have increased through time, but not monotonically, with major and fascinating swings to both lower and higher levels.

909 citations

Journal ArticleDOI
TL;DR: In this article, the upper mantle oxygen fugacity at the top of the spinel peridotite rocks is shown to fall within 2 log units of the fayalite-magnetite-quartz (FMQ) oxygen buffer.
Abstract: Oxygen thermobarometry measurements on spinel peridotite rocks indicate that the oxygen fugacity at the top of the upper mantle falls within ±2 log units of the fayalite-magnetite-quartz (FMQ) oxygen buffer. Measurements on garnet peridotites from cratonic lithosphere reveal a general decrease in fo2 with depth, which appears to result principally from the effect of pressure on the controlling Fe3+/Fe2+ equilibria. Modeling of experimental data indicates that at approximately 8 GPa, mantle fo2 will be 5 log units below FMQ and at a level where Ni-Fe metal becomes stable. Fe-Ni alloy and an Fe2O3-garnet component will be formed as a result of the disproportionation of FeO, which is experimentally demonstrated through observations of high Fe3+/ΣFe ratios in minerals in equilibrium with metallic Fe. In the lower mantle, the favorable coupled substitution of Al and Fe3+ into (Fe,Mg)SiO3 perovskite results in very high perovskite Fe3+/ΣFe ratios in equilibrium with metallic Fe. As a result, the lower mantle sh...

887 citations