scispace - formally typeset
Search or ask a question
Author

Jomuna V. Choudhuri

Other affiliations: BASF Plant Science
Bio: Jomuna V. Choudhuri is an academic researcher from Bielefeld University. The author has contributed to research in topics: Genome & Whole genome sequencing. The author has an hindex of 6, co-authored 6 publications receiving 3577 citations. Previous affiliations of Jomuna V. Choudhuri include BASF Plant Science.

Papers
More filters
Journal ArticleDOI
TL;DR: The subsystem approach is described, the first release of the growing library of populated subsystems is offered, and the SEED is the first annotation environment that supports this model of annotation.
Abstract: The release of the 1000th complete microbial genome will occur in the next two to three years. In anticipation of this milestone, the Fellowship for Interpretation of Genomes (FIG) launched the Project to Annotate 1000 Genomes. The project is built around the principle that the key to improved accuracy in high-throughput annotation technology is to have experts annotate single subsystems over the complete collection of genomes, rather than having an annotation expert attempt to annotate all of the genes in a single genome. Using the subsystems approach, all of the genes implementing the subsystem are analyzed by an expert in that subsystem. An annotation environment was created where populated subsystems are curated and projected to new genomes. A portable notion of a populated subsystem was defined, and tools developed for exchanging and curating these objects. Tools were also developed to resolve conflicts between populated subsystems. The SEED is the first annotation environment that supports this model of annotation. Here, we describe the subsystem approach, and offer the first release of our growing library of populated subsystems. The initial release of data includes 180 177 distinct proteins with 2133 distinct functional roles. This data comes from 173 subsystems and 383 different organisms.

1,896 citations

Journal ArticleDOI
TL;DR: The wide scope of repeat analysis is circumscribes using applications in five different areas of sequence analysis: checking fragment assemblies, searching for low copy repeats, finding unique sequences, comparing gene structures and mapping of cDNA/EST sequences.
Abstract: The repetitive structure of genomic DNA holds many secrets to be discovered. A systematic study of repetitive DNA on a genomic or inter-genomic scale requires extensive algorithmic support. The REPuter program described herein was designed to serve as a fundamental tool in such studies. Efficient and complete detection of various types of repeats is provided together with an evaluation of significance and interactive visualization. This article circumscribes the wide scope of repeat analysis using applications in five different areas of sequence analysis: checking fragment assemblies, searching for low copy repeats, finding unique sequences, comparing gene structures and mapping of cDNA/EST sequences.

1,460 citations

Journal ArticleDOI
TL;DR: The complete genome sequence of the model Sorangium strain S. cellulosum So ce56 is reported, which produces several natural products and has morphological and physiological properties typical of the genus, and the circular genome is the largest bacterial genome sequenced to date.
Abstract: The genus Sorangium synthesizes approximately half of the secondary metabolites isolated from myxobacteria, including the anti-cancer metabolite epothilone. We report the complete genome sequence of the model Sorangium strain S. cellulosum So ce56, which produces several natural products and has morphological and physiological properties typical of the genus. The circular genome, comprising 13,033,779 base pairs, is the largest bacterial genome sequenced to date. No global synteny with the genome of Myxococcus xanthus is apparent, revealing an unanticipated level of divergence between these myxobacteria. A large percentage of the genome is devoted to regulation, particularly post-translational phosphorylation, which probably supports the strain's complex, social lifestyle. This regulatory network includes the highest number of eukaryotic protein kinase-like kinases discovered in any organism. Seventeen secondary metabolite loci are encoded in the genome, as well as many enzymes with potential utility in industry.

370 citations

Journal ArticleDOI
TL;DR: Functional analysis of the predicted proteome disclosed several traits which in joint consideration suggest a clear adaptation of this marine Bacteroidetes representative to the degradation of high molecular weight organic matter, such as a substantial suite of genes encoding hydrolytic enzymes, a predicted preference for polymeric carbon sources and a distinct capability for surface adhesion.
Abstract: Summary Members of the Bacteroidetes, formerly known as the Cytophaga-Flavobacteria-Bacteroides (CFB) phylum, are among the major taxa of marine heterotrophic bacterioplankton frequently found on macroscopic organic matter particles (marine snow). In addition, they have been shown to also represent a significant part of free-living microbial assemblages in nutrient-rich microenvironments. Their abundance and distribution pattern in combination with enzymatic activity studies has led to the notion that organisms of this group are specialists for degradation of high molecular weight compounds in both the dissolved and particulate fraction of the marine organic matter pool, implying a major role of Bacteroidetes in the marine carbon cycle. Despite their ecological importance, comprehensive molecular data on organisms of this group have been scarce so far. Here we report on the first whole genome analysis of a marine Bacteroidetes representative, ‘Gramella forsetii’ KT0803. Functional analysis of the predicted proteome disclosed several traits which in joint consideration suggest a clear adaptation of this marine Bacteroidetes representative to the degradation of high molecular weight organic matter, such as a substantial suite of genes encoding hydrolytic enzymes, a predicted preference for polymeric carbon sources and a distinct capability for surface adhesion.

330 citations

Journal ArticleDOI
TL;DR: The genomic analysis suggests that B. petrii represents an evolutionary link between free-living environmental bacteria and the host-restricted obligate pathogenic Bordetellae and its remarkable metabolic versatility may enable B. Petrii to thrive in very different ecological niches.
Abstract: Bordetella petrii is the only environmental species hitherto found among the otherwise host-restricted and pathogenic members of the genus Bordetella. Phylogenetically, it connects the pathogenic Bordetellae and environmental bacteria of the genera Achromobacter and Alcaligenes, which are opportunistic pathogens. B. petrii strains have been isolated from very different environmental niches, including river sediment, polluted soil, marine sponges and a grass root. Recently, clinical isolates associated with bone degenerative disease or cystic fibrosis have also been described. In this manuscript we present the results of the analysis of the completely annotated genome sequence of the B. petrii strain DSMZ12804. B. petrii has a mosaic genome of 5,287,950 bp harboring numerous mobile genetic elements, including seven large genomic islands. Four of them are highly related to the clc element of Pseudomonas knackmussii B13, which encodes genes involved in the degradation of aromatics. Though being an environmental isolate, the sequenced B. petrii strain also encodes proteins related to virulence factors of the pathogenic Bordetellae, including the filamentous hemagglutinin, which is a major colonization factor of B. pertussis, and the master virulence regulator BvgAS. However, it lacks all known toxins of the pathogenic Bordetellae. The genomic analysis suggests that B. petrii represents an evolutionary link between free-living environmental bacteria and the host-restricted obligate pathogenic Bordetellae. Its remarkable metabolic versatility may enable B. petrii to thrive in very different ecological niches.

80 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A fully automated service for annotating bacterial and archaeal genomes that identifies protein-encoding, rRNA and tRNA genes, assigns functions to the genes, predicts which subsystems are represented in the genome, uses this information to reconstruct the metabolic network and makes the output easily downloadable for the user.
Abstract: The number of prokaryotic genome sequences becoming available is growing steadily and is growing faster than our ability to accurately annotate them. We describe a fully automated service for annotating bacterial and archaeal genomes. The service identifies protein-encoding, rRNA and tRNA genes, assigns functions to the genes, predicts which subsystems are represented in the genome, uses this information to reconstruct the metabolic network and makes the output easily downloadable for the user. In addition, the annotated genome can be browsed in an environment that supports comparative analysis with the annotated genomes maintained in the SEED environment. The service normally makes the annotated genome available within 12–24 hours of submission, but ultimately the quality of such a service will be judged in terms of accuracy, consistency, and completeness of the produced annotations. We summarize our attempts to address these issues and discuss plans for incrementally enhancing the service. By providing accurate, rapid annotation freely to the community we have created an important community resource. The service has now been utilized by over 120 external users annotating over 350 distinct genomes.

9,397 citations

Journal ArticleDOI
TL;DR: A new method for metagenomic biomarker discovery is described and validates by way of class comparison, tests of biological consistency and effect size estimation to address the challenge of finding organisms, genes, or pathways that consistently explain the differences between two or more microbial communities.
Abstract: This study describes and validates a new method for metagenomic biomarker discovery by way of class comparison, tests of biological consistency and effect size estimation. This addresses the challenge of finding organisms, genes, or pathways that consistently explain the differences between two or more microbial communities, which is a central problem to the study of metagenomics. We extensively validate our method on several microbiomes and a convenient online interface for the method is provided at http://huttenhower.sph.harvard.edu/lefse/.

9,057 citations

Journal ArticleDOI
TL;DR: Circos uses a circular ideogram layout to facilitate the display of relationships between pairs of positions by the use of ribbons, which encode the position, size, and orientation of related genomic elements.
Abstract: We created a visualization tool called Circos to facilitate the identification and analysis of similarities and differences arising from comparisons of genomes. Our tool is effective in displaying variation in genome structure and, generally, any other kind of positional relationships between genomic intervals. Such data are routinely produced by sequence alignments, hybridization arrays, genome mapping, and genotyping studies. Circos uses a circular ideogram layout to facilitate the display of relationships between pairs of positions by the use of ribbons, which encode the position, size, and orientation of related genomic elements. Circos is capable of displaying data as scatter, line, and histogram plots, heat maps, tiles, connectors, and text. Bitmap or vector images can be created from GFF-style data inputs and hierarchical configuration files, which can be easily generated by automated tools, making Circos suitable for rapid deployment in data analysis and reporting pipelines.

8,315 citations

Journal ArticleDOI
TL;DR: The newest version of MUMmer easily handles comparisons of large eukaryotic genomes at varying evolutionary distances, as demonstrated by applications to multiple genomes.
Abstract: The newest version of MUMmer easily handles comparisons of large eukaryotic genomes at varying evolutionary distances, as demonstrated by applications to multiple genomes. Two new graphical viewing tools provide alternative ways to analyze genome alignments. The new system is the first version of MUMmer to be released as open-source software. This allows other developers to contribute to the code base and freely redistribute the code. The MUMmer sources are available at http://www.tigr.org/software/mummer.

4,886 citations

Journal ArticleDOI
23 Nov 2006-Nature
TL;DR: A first-generation CNV map of the human genome is constructed through the study of 270 individuals from four populations with ancestry in Europe, Africa or Asia, underscoring the importance of CNV in genetic diversity and evolution and the utility of this resource for genetic disease studies.
Abstract: Copy number variation (CNV) of DNA sequences is functionally significant but has yet to be fully ascertained. We have constructed a first-generation CNV map of the human genome through the study of 270 individuals from four populations with ancestry in Europe, Africa or Asia (the HapMap collection). DNA from these individuals was screened for CNV using two complementary technologies: single-nucleotide polymorphism (SNP) genotyping arrays, and clone-based comparative genomic hybridization. A total of 1,447 copy number variable regions (CNVRs), which can encompass overlapping or adjacent gains or losses, covering 360 megabases (12% of the genome) were identified in these populations. These CNVRs contained hundreds of genes, disease loci, functional elements and segmental duplications. Notably, the CNVRs encompassed more nucleotide content per genome than SNPs, underscoring the importance of CNV in genetic diversity and evolution. The data obtained delineate linkage disequilibrium patterns for many CNVs, and reveal marked variation in copy number among populations. We also demonstrate the utility of this resource for genetic disease studies.

4,275 citations