scispace - formally typeset
Search or ask a question
Author

Jon A. McCleverty

Other affiliations: University of Birmingham
Bio: Jon A. McCleverty is an academic researcher from University of Bristol. The author has contributed to research in topics: Denticity & Ligand. The author has an hindex of 26, co-authored 104 publications receiving 4692 citations. Previous affiliations of Jon A. McCleverty include University of Birmingham.


Papers
More filters
Book
01 Jan 2004
TL;DR: This book discusses Coordination Chemistry of the s, p, and f Metals, as well as applications of Coordination chemistry in the context of Transition Metal Groups.
Abstract: Volume 1: Fundamentals: Ligands, Complexes, Synthesis, Purification, and Structure Volume 2: Fundamentals: Physical Methods, Theoretical Analysis, and Case Studies Volume 3: Coordination Chemistry of the s, p, and f Metals Volume 4: Transition Metal Groups 3-6 Volume 5: Transition Metal Groups 7 and 8 Volume 6: Transition Metal Groups 9-12 Volume 7: From the Molecular to the Nanoscale: Synthesis, Structure, and Properties Volume 8: Bio-coordination Chemistry Volume 9: Applications of Coordination Chemistry Volume 10: Indexes

385 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed recent work in the area of non-innocent behaviour in polynuclear metal complexes and showed that noninnocent behavior in dinuclear complexes is an essential prerequisite for strong metal-metal electronic coupling across extended bridging ligands.
Abstract: This article reviews recent work in the area of non-innocent behaviour in polynuclear metal complexes Non-innocence, which occurs when metal-based and ligand-based redox orbitals are similar in energy, has been known since the first dithiolene complexes of the Ni triad Our recent work in this field is with complexes of two distinct types: polynuclear complexes of Ru(II) with dioxolene-type bridging ligands; and dinuclear complexes based on tris(pyrazolyl)borato-Mo(V) or -Mo(I) units linked by bis-phenolate or bis-pyridyl bridging ligands Detailed redox and UV/Vis/NIR spectroelectrochemical studies on these complexes have been carried out An important point which emerges is that non-innocent behaviour in dinuclear complexes is an essential prerequisite for strong metal–metal electronic coupling across extended bridging ligands Many of the complexes studied show intense charge-transfer transitions in the near-IR region of the spectrum, and the use of these in prototypical optical devices is briefly discussed

370 citations

Journal ArticleDOI
TL;DR: Surprisingly under identical conditions but with NiII a simpler dinuclear complex forms.
Abstract: The templating effect of the tetrafluoroborate ion leads to assembly of four CoII ions and six bridging ligands around this anion to give a tetrahedral complex with a bridging ligand along each edge and the anion trapped in the central cavity (shown below). Surprisingly under identical conditions but with NiII a simpler dinuclear complex forms.

268 citations

Journal ArticleDOI
TL;DR: In this article, the second-order nonlinear optical polarisabilities or first hyperpolarisabilities of molecules may be manipulated by reversibly modifying the properties of specific parts of active molecules, usually by on/off switching.
Abstract: Second-order nonlinear optical (NLO) polarisabilities or first hyperpolarisabilities, β, of molecules may be manipulated by reversibly modifying the properties of specific parts of active molecules, usually by on/off switching. This may involve reducing the donor capacity of the electron-rich fragment of a typical donor–acceptor species, D–A, by oxidation or protonation. Conversely, the acceptor behaviour of A may be altered by reduction, or by deprotonation. Alteration of the first hyperpolarisability may also involve structural or chemical modification of the bridging group, thereby interfering with the communication between D and A. Much of the article focuses on redox behaviour of NLO-active metal-containing compounds, mainly describing dipolar species in which the donor fragment containing a metal is oxidised, but giving examples of switching behaviour in octopolar species and of protonation/deprotonation behaviour.

150 citations


Cited by
More filters
Journal ArticleDOI
10 Mar 1970

8,159 citations

Journal ArticleDOI
TL;DR: This critical review has been tailored for a broad audience of chemists, biochemists and materials scientists; the basics of lanthanide photophysics are highlighted together with the synthetic strategies used to insert these ions into mono- and polymetallic molecular edifices.
Abstract: Lanthanide ions possess fascinating optical properties and their discovery, first industrial uses and present high technological applications are largely governed by their interaction with light. Lighting devices (economical luminescent lamps, light emitting diodes), television and computer displays, optical fibres, optical amplifiers, lasers, as well as responsive luminescent stains for biomedical analysis, medical diagnosis, and cell imaging rely heavily on lanthanide ions. This critical review has been tailored for a broad audience of chemists, biochemists and materials scientists; the basics of lanthanide photophysics are highlighted together with the synthetic strategies used to insert these ions into mono- and polymetallic molecular edifices. Recent advances in NIR-emitting materials, including liquid crystals, and in the control of luminescent properties in polymetallic assemblies are also presented. (210 references.)

3,242 citations

Journal ArticleDOI
TL;DR: Anion recognition chemistry has grown from its beginnings with positively charged ammonium cryptand receptors for halide binding to a plethora of charged and neutral, cyclic and acyclic, inorganic and organic supramolecular host systems for the selective complexation, detection, and separation of anionic guest species.
Abstract: Anion recognition chemistry has grown from its beginnings in the late 1960s with positively charged ammonium cryptand receptors for halide binding to, at the end of the millennium, a plethora of charged and neutral, cyclic and acyclic, inorganic and organic supramolecular host systems for the selective complexation, detection, and separation of anionic guest species. Solvation effects and pH values have been shown to play crucial roles in the overall anion recognition process. More recent developments include exciting advances in anion-templated syntheses and directed self-assembly, ion-pair recognition, and the function of anions in supramolecular catalysis.

3,145 citations

Journal ArticleDOI
TL;DR: In the early 1960s, the discovery of crown ethers and spherands by Pedersen, Lehn, and Cram3 led to the realization that small, complementary molecules can be made to recognize each other through non-covalent interactions such as hydrogen-bonding, charge-charge, donor-acceptor, π-π, van der Waals, hydrophilic and hydrophobic interactions to achieve these highly complex and often symmetrical architectures as mentioned in this paper.
Abstract: Fascination with supramolecular chemistry over the last few decades has led to the synthesis of an ever-increasing number of elegant and intricate functional structures with sizes that approach nanoscopic dimensions Today, it has grown into a mature field of modern science whose interfaces with many disciplines have provided invaluable opportunities for crossing boundaries both inside and between the fields of chemistry, physics, and biology This chemistry is of continuing interest for synthetic chemists; partly because of the fascinating physical and chemical properties and the complex and varied aesthetically pleasing structures that supramolecules possess For scientists seeking to design novel molecular materials exhibiting unusual sensing, magnetic, optical, and catalytic properties, and for researchers investigating the structure and function of biomolecules, supramolecular chemistry provides limitless possibilities Thus, it transcends the traditional divisional boundaries of science and represents a highly interdisciplinary field In the early 1960s, the discovery of ‘crown ethers’, ‘cryptands’ and ‘spherands’ by Pedersen,1 Lehn,2 and Cram3 respectively, led to the realization that small, complementary molecules can be made to recognize each other through non-covalent interactions such as hydrogen-bonding, charge-charge, donor-acceptor, π-π, van der Waals, etc Such ‘programmed’ molecules can thus be self-assembled by utilizing these interactions in a definite algorithm to form large supramolecules that have different physicochemical properties than those of the precursor building blocks Typical systems are designed such that the self-assembly process is kinetically reversible; the individual building blocks gradually funnel towards an ensemble that represents the thermodynamic minimum of the system via numerous association and dissociation steps By tuning various reaction parameters, the reaction equilibrium can be shifted towards the desired product As such, self-assembly has a distinct advantage over traditional, stepwise synthetic approaches when accessing large molecules It is well known that nature has the ability to assemble relatively simple molecular precursors into extremely complex biomolecules, which are vital for life processes Nature’s building blocks possess specific functionalities in configurations that allow them to interact with one another in a deliberate manner Protein folding, nucleic acid assembly and tertiary structure, phospholipid membranes, ribosomes, microtubules, etc are but a selective, representative example of self-assembly in nature that is of critical importance for living organisms Nature makes use of a variety of weak, non-covalent interactions such as hydrogen–bonding, charge–charge, donor–acceptor, π-π, van der Waals, hydrophilic and hydrophobic, etc interactions to achieve these highly complex and often symmetrical architectures In fact, the existence of life is heavily dependent on these phenomena The aforementioned structures provide inspiration for chemists seeking to exploit the ‘weak interactions’ described above to make scaffolds rivaling the complexity of natural systems The breadth of supramolecular chemistry has progressively increased with the synthesis of numerous unique supramolecules each year Based on the interactions used in the assembly process, supramolecular chemistry can be broadly classified in to three main branches: i) those that utilize H-bonding motifs in the supramolecular architectures, ii) processes that primarily use other non-covalent interactions such as ion-ion, ion-dipole, π–π stacking, cation-π, van der Waals and hydrophobic interactions, and iii) those that employ strong and directional metal-ligand bonds for the assembly process However, as the scale and degree of complexity of desired molecules increases, the assembly of small molecular units into large, discrete supramolecules becomes an increasingly daunting task This has been due in large part to the inability to completely control the directionality of the weak forces employed in the first two classifications above Coordination-driven self-assembly, which defines the third approach, affords a greater control over the rational design of 2D and 3D architectures by capitalizing on the predictable nature of the metal-ligand coordination sphere and ligand lability to encode directionality Thus, this third strategy represents an alternative route to better execute the “bottom-up” synthetic strategy for designing molecules of desired dimensions, ranging from a few cubic angstroms to over a cubic nanometer For instance, a wide array of 2D systems: rhomboids, squares, rectangles, triangles, etc, and 3D systems: trigonal pyramids, trigonal prisms, cubes, cuboctahedra, double squares, adamantanoids, dodecahedra and a variety of other cages have been reported As in nature, inherent preferences for particular geometries and binding motifs are ‘encoded’ in certain molecules depending on the metals and functional groups present; these moieties help to control the way in which the building blocks assemble into well-defined, discrete supramolecules4 Since the early pioneering work by Lehn5 and Sauvage6 on the feasibility and usefulness of coordination-driven self-assembly in the formation of infinite helicates, grids, ladders, racks, knots, rings, catenanes, rotaxanes and related species,7 several groups - Stang,8 Raymond,9 Fujita,10 Mirkin,11 Cotton12 and others13,14 have independently developed and exploited novel coordination-based paradigms for the self-assembly of discrete metallacycles and metallacages with well-defined shapes and sizes In the last decade, the concepts and perspectives of coordination-driven self-assembly have been delineated and summarized in several insightful reviews covering various aspects of coordinationdriven self-assembly15 In the last decade, the use of this synthetic strategy has led to metallacages dubbed as “molecular flasks” by Fujita,16 and Raymond and Bergman,17 which due to their ability to encapsulate guest molecules, allowed for the observation of unique chemical phenomena and unusual reactions which cannot be achieved in the conventional gas, liquid or solid phases Furthermore, these assemblies found applications in supramolecular catalysis18,19 and as nanomaterials as developed by Hupp20 and others21,22 This review focuses on the journey of early coordination-driven self-assembly paradigms to more complex and discrete 2D and 3D supramolecular ensembles over the last decade We begin with a discussion of various approaches that have been developed by different groups to assemble finite supramolecular architectures The subsequent sections contain detailed discussions on the synthesis of discrete 2D and 3D systems, their functionalizations and applications

2,388 citations