scispace - formally typeset
Search or ask a question
Author

Jon Clardy

Bio: Jon Clardy is an academic researcher from Harvard University. The author has contributed to research in topics: Absolute configuration & Heterologous expression. The author has an hindex of 116, co-authored 983 publications receiving 56617 citations. Previous affiliations of Jon Clardy include Howard Hughes Medical Institute & University of Chicago.


Papers
More filters
Journal ArticleDOI
TL;DR: The concept of cloning the metagenome to access the collective genomes and the biosynthetic machinery of soil microflora is explored here.

1,677 citations

Journal ArticleDOI
TL;DR: This review presents recommended nomenclature for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), a rapidly growing class of natural products.

1,560 citations

Journal ArticleDOI
TL;DR: High resolution structures for the complexes formed by the immunosuppressive agents FK506 and rapamycin with the human immunophilin FKBP-12 have been determined by X-ray diffraction and suggest ways in which this catalytic activity could operate.

1,249 citations

Journal ArticleDOI
TL;DR: Phylogenetic analysis of 16S rRNA gene sequences recovered from one of the libraries indicates that the BAC libraries contain DNA from a wide diversity of microbial phyla, including sequences from diverse taxa such as the low-G+C, gram-positive Acidobacterium,Cytophagales, and Proteobacteria.
Abstract: Recent progress in molecular microbial ecology has revealed that traditional culturing methods fail to represent the scope of microbial diversity in nature, since only a small proportion of viable microorganisms in a sample are recovered by culturing techniques. To develop methods to investigate the full extent of microbial diversity, we used a bacterial artificial chromosome (BAC) vector to construct libraries of genomic DNA isolated directly from soil (termed metagenomic libraries). To date, we have constructed two such libraries, which contain more than 1 Gbp of DNA. Phylogenetic analysis of 16S rRNA gene sequences recovered from one of the libraries indicates that the BAC libraries contain DNA from a wide diversity of microbial phyla, including sequences from diverse taxa such as the low-G1C, gram-positive Acidobacterium, Cytophagales, and Proteobacteria. Initial screening of the libraries in Escherichia coli identified several clones that express heterologous genes from the inserts, confirming that the BAC vector can be used to maintain, express, and analyze environmental DNA. The phenotypes expressed by these clones include antibacterial, lipase, amylase, nuclease, and hemolytic activities. Metagenomic libraries are a powerful tool for exploring soil microbial diversity, providing access to the genetic information of uncultured soil microorganisms. Such libraries will be the basis of new initiatives to conduct genomic studies that link phylogenetic and functional information about the microbiota of environments dominated by microorganisms that are refractory to cultivation. The biosphere is dominated by microorganisms (32), yet most microbes in nature have not been studied. Traditional methods for culturing microorganisms limit analysis to those that grow under laboratory conditions (14, 25). The recent surge of research in molecular microbial ecology provides compelling evidence for the existence of many novel types of microorganisms in the environment in numbers and varieties that dwarf those of the comparatively few microorganisms amenable to laboratory cultivation (7, 13, 31). Corroboration comes from estimates of DNA complexity and the discovery of many unique 16S rRNA gene sequences from numerous environmental sources (8, 10, 28). Collectively, the genomes of the total microbiota found in nature, which we termed the metagenome (11), contain vastly more genetic information than is contained in the culturable subset. Given the profound utility and importance of microorganisms to all biological systems, methods are needed to access the wealth of information within the metagenome. Cloning large fragments of DNA isolated directly from microbes in natural environments provides a method to access soil metagenomic DNA. Previously, we investigated the use of the bacterial artificial chromosome (BAC) vector to express Bacillus cereus genomic DNA (20). The advantage of BAC vectors is that they maintain very large DNA inserts (greater than 100 kb) stably in Escherichia coli (23), facilitating the cloning of large fragments of DNA. Our results demonstrated that expression of heterologous DNA from B. cereus in an E. coli BAC system was detectable at a reasonable frequency (20), validating the idea that the low-copy BAC vector (one to two per cell) (23) could be used to express foreign DNA from foreign promoters in E. coli. Here we describe the construction and initial screening of two BAC libraries made with DNA isolated directly from soil. We found detectable levels of several biochemical activities from BAC library clones. Sequence analysis of selected BAC plasmids encoding such activities and of 16S rRNA genes in one of the libraries confirms the novelty of the genomic information cloned in our libraries. The results show that DNA extracted directly from soil is a valuable source of new genetic information and is accessible by using BAC libraries. Our results demonstrate that both traditional and functional genomics of uncultured microorganisms can be carried out by this approach and that screening of metagenome libraries for activities or gene sequences can provide a basis for conducting genomic analyses of uncultured microorganisms.

1,230 citations

Journal ArticleDOI
15 Dec 2004-Nature
TL;DR: Improvements in approaches for natural-product isolation, characterization and synthesis could be opening the door to a new era in the investigation of natural products in academia and industry.
Abstract: Natural products have inspired chemists and physicians for millennia. Their rich structural diversity and complexity has prompted synthetic chemists to produce them in the laboratory, often with therapeutic applications in mind, and many drugs used today are natural products or natural-product derivatives. Recent years have seen considerable advances in our understanding of natural-product biosynthesis. Coupled with improvements in approaches for natural-product isolation, characterization and synthesis, these could be opening the door to a new era in the investigation of natural products in academia and industry.

1,016 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The results of a single-crystal structure determination when in CIF format can now be validated routinely by automatic procedures, and the concepts of validation and the classes of checks carried out by the program PLATON as part of the IUCr checkCIF facility are described.
Abstract: The results of a single-crystal structure determination when in CIF format can now be validated routinely by automatic procedures. In this way, many errors in published papers can be avoided. The validation software generates a set of ALERTS detailing issues to be addressed by the experimenter, author, referee and publication journal. Validation was pioneered by the IUCr journal Acta Crystallographica Section C and is currently standard procedure for structures submitted for publication in all IUCr journals. The implementation of validation procedures by other journals is in progress. This paper describes the concepts of validation and the classes of checks that are carried out by the program PLATON as part of the IUCr checkCIF facility. PLATON validation can be run at any stage of the structure refinement, independent of the structure determination package used, and is recommended for use as a routine tool during or at least at the completion of every structure determination. Two examples are discussed where proper validation procedures could have avoided the publication of incorrect structures that had serious consequences for the chemistry involved.

12,231 citations

Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations