scispace - formally typeset
Search or ask a question
Author

Jon Crowcroft

Bio: Jon Crowcroft is an academic researcher from University of Cambridge. The author has contributed to research in topics: The Internet & Multicast. The author has an hindex of 87, co-authored 672 publications receiving 38848 citations. Previous affiliations of Jon Crowcroft include Memorial University of Newfoundland & Information Technology University.


Papers
More filters
Book ChapterDOI
21 Feb 2003
TL;DR: Lighthouse as mentioned in this paper is a scalable location mechanism for wide-area networks, which can be used to avoid the communication bottlenecks and single-points-of-failure that otherwise limit the practicality of such systems.
Abstract: This paper introduces Lighthouse, a scalable location mechanism for wide-area networks. Unlike existing vector-based systems such as GNP, we show how network-location can be established without using a fixed set of reference points. This lets us avoid the communication bottlenecks and single-points-of-failure that otherwise limit the practicality of such systems.

263 citations

Proceedings ArticleDOI
02 Nov 2005
TL;DR: Results from analysis, simulation and an experimental 48 Mica2 mote testbed show that virtual sinks can scale mote networks by effectively managing growing traffic demands while minimizing the impact on application fidelity.
Abstract: There is a critical need for new thinking regarding overload traffic management in sensor networks. It has now become clear that experimental sensor networks (e.g., mote networks) and their applications commonly experience periods of persistent congestion and high packet loss, and in some cases even congestion collapse. This significantly impacts application fidelity measured at the physical sinks, even under light to moderate traffic loads, and is a direct product of the funneling effect; that is, the many-to-one multi-hop traffic pattern that characterizes sensor network communications. Existing congestion control schemes are effective at mitigating congestion through rate control and packet drop mechanisms, but do so at the cost of significantly reducing application fidelity measured at the sinks. To address this problem we propose to exploit the availability of a small number of all wireless, multi-radio virtual sinks that can be randomly distributed or selectively placed across the sensor field. Virtual sinks are capable of siphoning off data events from regions of the sensor field that are beginning to show signs of high traffic load. In this paper, we present the design, implementation, and evaluation of Siphon, a set of fully distributed algorithms that support virtual sink discovery and selection, congestion detection, and traffic redirection in sensor networks. Siphon is based on a Stargate implementation of virtual sinks that uses a separate longer-range radio network (based on IEEE 802.11) to siphon events to one or more physical sinks, and a short-range mote radio to interact with the sensor field at siphon points. Results from analysis, simulation and an experimental 48 Mica2 mote testbed show that virtual sinks can scale mote networks by effectively managing growing traffic demands while minimizing the impact on application fidelity.

234 citations

Proceedings ArticleDOI
04 Dec 2006
TL;DR: This paper shows how using a small label, identifying users according to their affiliation, can bring a large improvement in forwarding performance, in term of both delivery ratio and cost.
Abstract: It is widely believed that identifying communities in an ad hoc mobile communications system, such as a pocket switched network, can reduce the amount of traffic created when forwarding messages, but there has not been any empirical evidence available to support this assumption to date. In this paper, we show through use of real experimental human mobility data, how using a small label, identifying users according to their affiliation, can bring a large improvement in forwarding performance, in term of both delivery ratio and cost.

233 citations

01 Dec 2001
TL;DR: Pragmatic General Multicast is a reliable multicast transport protocol for applications that require ordered or unordered, duplicate-free, multicast data delivery from multiple sources to multiple receivers.
Abstract: Pragmatic General Multicast (PGM) is a reliable multicast transport protocol for applications that require ordered or unordered, duplicate-free, multicast data delivery from multiple sources to multiple receivers. PGM guarantees that a receiver in the group either receives all data packets from transmissions and repairs, or is able to detect unrecoverable data packet loss. PGM is

226 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: In this paper, Imagined communities: Reflections on the origin and spread of nationalism are discussed. And the history of European ideas: Vol. 21, No. 5, pp. 721-722.

13,842 citations

Journal ArticleDOI
TL;DR: A thorough exposition of community structure, or clustering, is attempted, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists.
Abstract: The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such clusters, or communities, can be considered as fairly independent compartments of a graph, playing a similar role like, e. g., the tissues or the organs in the human body. Detecting communities is of great importance in sociology, biology and computer science, disciplines where systems are often represented as graphs. This problem is very hard and not yet satisfactorily solved, despite the huge effort of a large interdisciplinary community of scientists working on it over the past few years. We will attempt a thorough exposition of the topic, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.

9,057 citations

Journal ArticleDOI
TL;DR: A thorough exposition of the main elements of the clustering problem can be found in this paper, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.

8,432 citations