scispace - formally typeset
Search or ask a question
Author

Jonard Corpuz Valdoz

Bio: Jonard Corpuz Valdoz is an academic researcher from Brigham Young University. The author has contributed to research in topics: Extracellular matrix & Organoid. The author has an hindex of 3, co-authored 9 publications receiving 29 citations.

Papers
More filters
Journal ArticleDOI
27 Feb 2020
TL;DR: A-PEGDA has significant promise for a wide variety of cell-based applications using 3D printed microfluidic structures and is compatible with and designed for use in custom high-resolution 3D printers that follow the design approach described in Gong et al., Lab Chip 17, 2899 (2017).
Abstract: We report a non-cytotoxic resin compatible with and designed for use in custom high-resolution 3D printers that follow the design approach described in Gong et al., Lab Chip 17, 2899 (2017). The non-cytotoxic resin is based on a poly(ethylene glycol) diacrylate (PEGDA) monomer with avobenzone as the UV absorber instead of 2-nitrophenyl phenyl sulfide (NPS). Both NPS-PEGDA and avobenzone-PEGDA (A-PEGDA) resins were evaluated for cytotoxicity and cell adhesion. We show that NPS-PEGDA can be made effectively non-cytotoxic with a post-print 12-hour ethanol wash, and that A-PEGDA, as-printed, is effectively non-cytotoxic. 3D prints made with either resin do not support strong cell adhesion in their as-printed state; however, cell adhesion increases dramatically with a short plasma treatment. Using A-PEGDA, we demonstrate spheroid formation in ultra-low adhesion 3D printed wells, and cell migration from spheroids on plasma-treated adherent surfaces. Given that A-PEGDA can be 3D printed with high resolution, it has significant promise for a wide variety of cell-based applications using 3D printed microfluidic structures.

61 citations

Journal ArticleDOI
TL;DR: In this article, a generalized 3D printing process is proposed for high-resolution microfluidic device fabrication, which significantly expands the accessible spatially distributed optical dose parameter space to enable the fabrication of much higher resolution 3D components without increasing the resolution of the 3D printer.
Abstract: Traditional 3D printing based on Digital Light Processing Stereolithography (DLP-SL) is unnecessarily limiting as applied to microfluidic device fabrication, especially for high-resolution features. This limitation is due primarily to inherent tradeoffs between layer thickness, exposure time, material strength, and optical penetration that can be impossible to satisfy for microfluidic features. We introduce a generalized 3D printing process that significantly expands the accessible spatially distributed optical dose parameter space to enable the fabrication of much higher resolution 3D components without increasing the resolution of the 3D printer. Here we demonstrate component miniaturization in conjunction with a high degree of integration, including 15 μm × 15 μm valves and a 2.2 mm × 1.1 mm 10-stage 2-fold serial diluter. These results illustrate our approach’s promise to enable highly functional and compact microfluidic devices for a wide variety of biomolecular applications. The ever-growing need for highly functional, compact, and integrated microfluidic devices often incurs lengthy and expensive manufacturing processes. Here, authors introduce a generalized 3D printing process that enables fast parallel fabrication of miniaturized, high resolution 3D components.

39 citations

Journal ArticleDOI
TL;DR: The extracellular matrix (ECM) has pleiotropic effects, ranging from cell adhesion to cell survival, and the use of ECM and ECM-like scaffolds has separated the field into two distinct areas.
Abstract: The extracellular matrix (ECM) has pleiotropic effects, ranging from cell adhesion to cell survival. In tissue engineering, the use of ECM and ECM-like scaffolds has separated the field into two distinct areas—scaffold-based and scaffold-free. Scaffold-free techniques are used in creating reproducible cell aggregates which have massive potential for high-throughput, reproducible drug screening and disease modeling. Though, the lack of ECM prevents certain cells from surviving and proliferating. Thus, tissue engineers use scaffolds to mimic the native ECM and produce organotypic models which show more reliability in disease modeling. However, scaffold-based techniques come at a trade-off of reproducibility and throughput. To bridge the tissue engineering dichotomy, we posit that finding novel ways to incorporate the ECM in scaffold-free cultures can synergize these two disparate techniques.

33 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that MARK mediates 14-3-3 and TNK1 interaction which restrains TNK 1 activity, while the release of TN 1 from 14- 3-3 leads to TN 1 activation through its interaction with ubiquitin and thus results in TN 1-mediated tumor growth.
Abstract: TNK1 is a non-receptor tyrosine kinase with poorly understood biological function and regulation. Here, we identify TNK1 dependencies in primary human cancers. We also discover a MARK-mediated phosphorylation on TNK1 at S502 that promotes an interaction between TNK1 and 14-3-3, which sequesters TNK1 and inhibits its kinase activity. Conversely, the release of TNK1 from 14-3-3 allows TNK1 to cluster in ubiquitin-rich puncta and become active. Active TNK1 induces growth factor-independent proliferation of lymphoid cells in cell culture and mouse models. One unusual feature of TNK1 is a ubiquitin-association domain (UBA) on its C-terminus. Here, we characterize the TNK1 UBA, which has high affinity for poly-ubiquitin. Point mutations that disrupt ubiquitin binding inhibit TNK1 activity. These data suggest a mechanism in which TNK1 toggles between 14-3-3-bound (inactive) and ubiquitin-bound (active) states. Finally, we identify a TNK1 inhibitor, TP-5801, which shows nanomolar potency against TNK1-transformed cells and suppresses tumor growth in vivo. The mechanisms underlying the activity of non-receptor tyrosine kinase, TNK1, in cancers are unclear. Here the authors show that MARK mediates 14-3-3 and TNK1 interaction which restrains TNK1 activity, while the release of TNK1 from 14-3-3 leads to TNK1 activation through its interaction with ubiquitin and thus results in TNK1-mediated tumor growth in vivo

11 citations

Journal ArticleDOI
03 Sep 2020-PLOS ONE
TL;DR: Novel results reveal Gal-1 mediates disease pathologies through both changes in integral myogenic protein expression and mechanical membrane stabilization.
Abstract: Limb-girdle muscular dystrophy type 2B (LGMD2B) is caused by mutations in the dysferlin gene, resulting in non-functional dysferlin, a key protein found in muscle membrane. Treatment options available for patients are chiefly palliative in nature and focus on maintaining ambulation. Our hypothesis is that galectin-1 (Gal-1), a soluble carbohydrate binding protein, increases membrane repair capacity and myogenic potential of dysferlin-deficient muscle cells and muscle fibers. To test this hypothesis, we used recombinant human galectin-1 (rHsGal-1) to treat dysferlin-deficient models. We show that rHsGal-1 treatments of 48 h-72 h promotes myogenic maturation as indicated through improvements in size, myotube alignment, myoblast migration, and membrane repair capacity in dysferlin-deficient myotubes and myofibers. Furthermore, increased membrane repair capacity of dysferlin-deficient myotubes, independent of increased myogenic maturation is apparent and co-localizes on the membrane of myotubes after a brief 10min treatment with labeled rHsGal-1. We show the carbohydrate recognition domain of Gal-1 is necessary for observed membrane repair. Improvements in membrane repair after only a 10 min rHsGal-1treatment suggest mechanical stabilization of the membrane due to interaction with glycosylated membrane bound, ECM or yet to be identified ligands through the CDR domain of Gal-1. rHsGal-1 shows calcium-independent membrane repair in dysferlin-deficient and wild-type myotubes and myofibers. Together our novel results reveal Gal-1 mediates disease pathologies through both changes in integral myogenic protein expression and mechanical membrane stabilization.

8 citations


Cited by
More filters
Journal ArticleDOI
14 Mar 2022-Gels
TL;DR: In this article , the state of the art of the utilization of bio-inks based on natural polymers (biopolymers), such as cellulose, agarose, alginate, decellularized matrix, in 3D bioprinting is explored.
Abstract: Three-dimensional (3D) printing is well acknowledged to constitute an important technology in tissue engineering, largely due to the increasing global demand for organ replacement and tissue regeneration. In 3D bioprinting, which is a step ahead of 3D biomaterial printing, the ink employed is impregnated with cells, without compromising ink printability. This allows for immediate scaffold cellularization and generation of complex structures. The use of cell-laden inks or bio-inks provides the opportunity for enhanced cell differentiation for organ fabrication and regeneration. Recognizing the importance of such bio-inks, the current study comprehensively explores the state of the art of the utilization of bio-inks based on natural polymers (biopolymers), such as cellulose, agarose, alginate, decellularized matrix, in 3D bioprinting. Discussions regarding progress in bioprinting, techniques and approaches employed in the bioprinting of natural polymers, and limitations and prospects concerning future trends in human-scale tissue and organ fabrication are also presented.

54 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide an overview on the latest accomplishments in 3D printed drug delivery devices as well as major challenges and future perspectives for AM enabled dosage forms and drug delivery systems.

53 citations

Journal ArticleDOI
TL;DR: In this article, the authors identify the key progress points that have been made on the use of 3D printing to manufacture microneedles in the past three years and attempt to estimate the impact on the transdermal drug delivery market.

42 citations

Journal ArticleDOI
TL;DR: In this article, a generalized 3D printing process is proposed for high-resolution microfluidic device fabrication, which significantly expands the accessible spatially distributed optical dose parameter space to enable the fabrication of much higher resolution 3D components without increasing the resolution of the 3D printer.
Abstract: Traditional 3D printing based on Digital Light Processing Stereolithography (DLP-SL) is unnecessarily limiting as applied to microfluidic device fabrication, especially for high-resolution features. This limitation is due primarily to inherent tradeoffs between layer thickness, exposure time, material strength, and optical penetration that can be impossible to satisfy for microfluidic features. We introduce a generalized 3D printing process that significantly expands the accessible spatially distributed optical dose parameter space to enable the fabrication of much higher resolution 3D components without increasing the resolution of the 3D printer. Here we demonstrate component miniaturization in conjunction with a high degree of integration, including 15 μm × 15 μm valves and a 2.2 mm × 1.1 mm 10-stage 2-fold serial diluter. These results illustrate our approach’s promise to enable highly functional and compact microfluidic devices for a wide variety of biomolecular applications. The ever-growing need for highly functional, compact, and integrated microfluidic devices often incurs lengthy and expensive manufacturing processes. Here, authors introduce a generalized 3D printing process that enables fast parallel fabrication of miniaturized, high resolution 3D components.

39 citations

Journal ArticleDOI
TL;DR: In this paper, a dataset of more than 3800 proteins detected by single-fiber proteomics, selected 404 proteins showing a statistically significant difference among fiber types, including proteins expressed in 2A and 2X fibers at levels 3 times greater than in type 1 fibers.
Abstract: Human skeletal muscle is composed of three major fiber types, referred to as type 1, 2A, and 2X fibers. This heterogeneous cellular composition complicates the interpretation of studies based on whole skeletal muscle lysate. A single-fiber proteomics approach is required to obtain a fiber-type resolved quantitative information on skeletal muscle pathophysiology. Single fibers were dissected from vastus lateralis muscle biopsies of young adult males and processed for mass spectrometry-based single-fiber proteomics. We provide and analyze a resource dataset based on relatively pure fibers, containing at least 80% of either MYH7 (marker of slow type 1 fibers), MYH2 (marker of fast 2A fibers), or MYH1 (marker of fast 2X fibers). In a dataset of more than 3800 proteins detected by single-fiber proteomics, we selected 404 proteins showing a statistically significant difference among fiber types. We identified numerous type 1 or 2X fiber type–specific protein markers, defined as proteins present at 3-fold or higher levels in these compared to other fiber types. In contrast, we could detect only two 2A-specific protein markers in addition to MYH2. We observed three other major patterns: proteins showing a differential distribution according to the sequence 1 > 2A > 2X or 2X > 2A > 1 and type 2–specific proteins expressed in 2A and 2X fibers at levels 3 times greater than in type 1 fibers. In addition to precisely quantifying known fiber type–specific protein patterns, our study revealed several novel features of fiber type specificity, including the selective enrichment of components of the dystrophin and integrin complexes, as well as microtubular proteins, in type 2X fibers. The fiber type–specific distribution of some selected proteins revealed by proteomics was validated by immunofluorescence analyses with specific antibodies. We here show that numerous muscle proteins, including proteins whose function is unknown, are selectively enriched in specific fiber types, pointing to potential implications in muscle pathophysiology. This reinforces the notion that single-fiber proteomics, together with recently developed approaches to single-cell proteomics, will be instrumental to explore and quantify muscle cell heterogeneity.

33 citations