scispace - formally typeset
Search or ask a question
Author

Jonas Sottmann

Bio: Jonas Sottmann is an academic researcher from University of Oslo. The author has contributed to research in topics: Anode & Bismuth. The author has an hindex of 11, co-authored 19 publications receiving 393 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, it was shown that anodes made from nanocrystalline bismuth form different phases during electrochemical cycling compared to anodes with larger crystallites due to the formation of a metastable cubic polymorph of Na3Bi on the crystallite surfaces.
Abstract: Crystallite size effects can influence the performance of battery materials by making the structural chemistry deviate from what is predicted by the equilibrium phase diagram. The implications of this are profound: the properties of many battery materials should be reassessed. Sodium ion battery anodes made from nanocrystalline bismuth form different phases during electrochemical cycling compared to anodes with larger crystallites. This is due to the formation of a metastable cubic polymorph of Na3Bi on the crystallite surfaces. The structural differences (weaker Na–Bi bonds, different coordination of Na to Bi) between the metastable cubic Na3Bi phase found in the nanocrystals and the hexagonal equilibrium polymorph which dominates the larger crystallites offer an explanation for the improvements in cycling behavior observed for the nanostructured anode.

100 citations

Journal ArticleDOI
TL;DR: In this article, a comparative, combined ab initio and experimental study of sodium and lithium storage in amorphous (glassy) carbon (a-C) versus graphite is presented.
Abstract: We present a comparative, combined ab initio and experimental study of sodium and lithium storage in amorphous (glassy) carbon (a-C) versus graphite. Amorphous structures are obtained by fitting stochastically generated structures to a reference radial distribution function. Li insertion is thermodynamically favored in both graphite and a-C. While sodium insertion is thermodynamically unfavored in graphite, a-C possesses multiple insertion sites with binding energies stronger than Na cohesive energy, making it usable as anode material for Na-ion batteries. Binding energy of Na is predicted to be stronger than the Na cohesive energy for Na concentrations corresponding to a capacity of about 200 mAh/g. These results are confirmed by experimental measurements using highly amorphous carbon, in which a specific capacity of 173 mAh/g for Na is obtained after 100 cycles.

58 citations

Journal ArticleDOI
TL;DR: In this article, the authors used X-ray diffraction computed tomography (XRD-CT) to study specific components of an essentially unmodified working cell and extract detailed, space-resolved structural information on both crystalline and amorphous phases that are present during cycling by Rietveld and pair distribution function.
Abstract: To improve lithium and sodium ion battery technology, it is imperative to understand how the properties of the different components are controlled by their chemical structures. Operando structural studies give us some of the most useful information for understanding how batteries work, but it remains difficult to separate out the contributions of the various components of a battery stack (e.g., electrodes, current collectors, electrolyte, and binders) and examine specific materials. We have used operando X-ray diffraction computed tomography (XRD-CT) to study specific components of an essentially unmodified working cell and extract detailed, space-resolved structural information on both crystalline and amorphous phases that are present during cycling by Rietveld and pair distribution function (PDF) methods. We illustrate this method with the first detailed structural examination of the cycling of sodium in a phosphorus anode, revealing surprisingly different mechanisms for sodiation and desodiation in this promising, high-capacity anode system.

52 citations

Journal ArticleDOI
TL;DR: In this paper, the PBA Na1.32Mn[Fe(CN)6]0.83·z H2O (z = 3.0 and 2.2) with varying structural modifications (monoclinic and cubic) using in operando quasi-simultaneous X-ray diffraction (XRD) and Xray absorption spectroscopy (XAS).

50 citations

Journal ArticleDOI
TL;DR: In this article, the bismuth metalates, BiVO4 and Bi2(MoO4)3, as representatives of ternary metalates can cope with these requirements.
Abstract: Sodium-ion batteries may become an inexpensive alternative to lithium-ion batteries for large-scale stationary storage of energy generated by intermittent renewable sources. The key for the deployment of this technology is the development of suitable anode materials which can rival the graphite anodes used in lithium-ion batteries in terms of energy density, cycle life, rate performance, and safety. Here, we demonstrate that the bismuth metalates, BiVO4 and Bi2(MoO4)3, as representatives of ternary metalates, can cope with these requirements. High specific capacities (367 mAh/g and 352 mAh/g, respectively), exceptionally high cycling stability for alloying anodes (up to 79% of the first charge capacity is retained over 1000 cycles at ∼1C for Bi2(MoO4)3), better high-rate performance compared to other Bi-based anodes, low environmental load (Bi has low toxicity for a heavy metal), and low manufacturing costs (e.g., BiVO4 is a commercial yellow pigment) make this novel class of anode materials suitable for ...

41 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

3,009 citations

Journal ArticleDOI
TL;DR: In this paper, a review of recent progress on electrode materials for NIBs, including the discovery of new electrode materials and their Na storage mechanisms, is briefly reviewed, and efforts to enhance the electrochemical properties of NIB electrode materials as well as the challenges and perspectives involving these materials are discussed.
Abstract: Grid-scale energy storage systems (ESSs) that can connect to sustainable energy resources have received great attention in an effort to satisfy ever-growing energy demands. Although recent advances in Li-ion battery (LIB) technology have increased the energy density to a level applicable to grid-scale ESSs, the high cost of Li and transition metals have led to a search for lower-cost battery system alternatives. Based on the abundance and accessibility of Na and its similar electrochemistry to the well-established LIB technology, Na-ion batteries (NIBs) have attracted significant attention as an ideal candidate for grid-scale ESSs. Since research on NIB chemistry resurged in 2010, various positive and negative electrode materials have been synthesized and evaluated for NIBs. Nonetheless, studies on NIB chemistry are still in their infancy compared with LIB technology, and further improvements are required in terms of energy, power density, and electrochemical stability for commercialization. Most recent progress on electrode materials for NIBs, including the discovery of new electrode materials and their Na storage mechanisms, is briefly reviewed. In addition, efforts to enhance the electrochemical properties of NIB electrode materials as well as the challenges and perspectives involving these materials are discussed.

785 citations

Journal ArticleDOI
TL;DR: In this review, the recent research progress of alloy-type anodes and their compounds for sodium storage is summarized and specific efforts to enhance the electrochemical performance of the alloy-based anode materials are discussed, and the challenges and perspectives regarding these anode Materials are proposed.
Abstract: Sodium-ion batteries (SIBs) are considered as promising alternatives to lithium-ion batteries owing to the abundant sodium resources. However, the limited energy density, moderate cycling life, and immature manufacture technology of SIBs are the major challenges hindering their practical application. Recently, numerous efforts are devoted to developing novel electrode materials with high specific capacities and long durability. In comparison with carbonaceous materials (e.g., hard carbon), partial Group IVA and VA elements, such as Sn, Sb, and P, possess high theoretical specific capacities for sodium storage based on the alloying reaction mechanism, demonstrating great potential for high-energy SIBs. In this review, the recent research progress of alloy-type anodes and their compounds for sodium storage is summarized. Specific efforts to enhance the electrochemical performance of the alloy-based anode materials are discussed, and the challenges and perspectives regarding these anode materials are proposed.

567 citations