scispace - formally typeset
Search or ask a question
Author

Jonathan A. Coddington

Bio: Jonathan A. Coddington is an academic researcher from National Museum of Natural History. The author has contributed to research in topics: Theridiidae & Araneoidea. The author has an hindex of 54, co-authored 126 publications receiving 14722 citations. Previous affiliations of Jonathan A. Coddington include Smithsonian Institution & University of Maryland, College Park.


Papers
More filters
Journal ArticleDOI
TL;DR: The importance of using 'reference' sites to assess the true richness and composition of species assemblages, to measure ecologically significant ratios between unrelated taxa, toMeasure taxon/sub-taxon (hierarchical) ratios, and to 'calibrate' standardized sampling methods is discussed.
Abstract: Both the magnitude and the urgency of the task of assessing global biodiversity require that we make the most of what we know through the use of estimation and extrapolation. Likewise, future biodiversity inventories need to be designed around the use of effective sampling and estimation procedures, especially for 'hyperdiverse' groups of terrestrial organisms, such as arthropods, nematodes, fungi, and microorganisms. The challenge of estimating patterns of species richness from samples can be separated into (i) the problem of estimating local species richness, and (ii) the problem of estimating the distinctness, or complementarity, of species assemblages. These concepts apply on a wide range of spatial, temporal, and functional scales. Local richness can be estimated by extrapolating species accumulation curves, fitting parametric distributions of relative abundance, or using non-parametric techniques based on the distribution of individuals among species or of species among samples. We present several of these methods and examine their effectiveness for an example data set. We present a simple measure of complementarity, with some biogeographic examples, and outline the difficult problem of estimating complementarity from samples. Finally, we discuss the importance of using 'reference' sites (or sub-sites) to assess the true richness and composition of species assemblages, to measure ecologically significant ratios between unrelated taxa, to measure taxon/sub-taxon (hierarchical) ratios, and to 'calibrate' standardized sampling methods. This information can then be applied to the rapid, approximate assessment of species richness and faunal or floral composition at 'comparative' sites.

4,245 citations

Journal ArticleDOI
TL;DR: This brief review of taxonomic and phylogenetic knowledge of Araneae suggests where future efforts might profitably be concentrated.
Abstract: In the last 15 years understanding of the higher systematics of Araneae has changed greatly. Large classical superfamilies and families have turned out to be polyor paraphyletic; posited relationships were often based on sym­ plesiomorphies. In this brief review we summarize current taxonomic and phylogenetic knowledge and suggest where future efforts might profitably be concentrated. We lack space to discuss fully all the clades mentioned, and the cited numbers of described taxa are only approximate. Other aspects of spider biology have been summarized by Barth (7), Eberhard (47), Jackson & Parks (72), Nentwig (l05), Nyffeler & Benz ( 1 06), Riechert & Lockley ( 134), Shear ( 1 49) and Turnbull ( 160).

763 citations

Journal ArticleDOI
01 Mar 2002-Ecology
TL;DR: In this paper, a thorough inventory of a tropical rain forest ant fauna and use it to evaluate species richness estimators is reported, which demonstrates that patterns of species occurrence early in an inventory may be inadequate to estimate species richness, but that relatively complete inventories of species-rich arthropod communities are possible if multiple sampling methods and extensive effort are applied.
Abstract: Species richness is an important characteristic of ecological communities, but it is difficult to quantify. We report here a thorough inventory of a tropical rain forest ant fauna and use it to evaluate species richness estimators. The study was carried out in ;1500 ha of lowland rain forest at La Selva Biological Station, Costa Rica. Diverse methods were used, including canopy fogging, Malaise traps, Berlese samples, Winkler samples, baiting, and manual search. Workers of 437 ant species were encountered. The abundance distribution was clearly lognormal, and the distribution emerged from a veil line with each doubling of sampling effort. Three richness estimates were calculated: the area under the fitted lognormal distribution, the asymptote of the Michaelis-Menten equation fit to the species accumulation curve, and the Incidence-based Coverage Estimator (ICE). The per- formance of the estimators was evaluated with sample-based rarefaction plots. The inventory was nearly complete because the species accumulation curve approached an asymptote, the richness estimates were very close to the observed species richness, and the uniques and duplicates curves were both declining. None of the richness estimators was stable in sample- based rarefaction plots, but regions of stability of estimators occurred. The explanation of rarity is one key to understanding why richness estimates fail. Fifty-one species (12% of the total) were still uniques (known from only one sample) at the end of the inventory. The rarity of 20 of these species was explained by ''edge effects'': ''methodological edge species'' (possibly abundant at the site but difficult to sample because of their microhabitat), and ''geographic edge species,'' known to be common in habitats or regions outside of La Selva. Rarity of 31 species remained unexplained. Most of the 51 rare species were known from additional collections outside of La Selva, either in other parts of Costa Rica or in other countries. Only six species were ''global uniques,'' known to date from only one sample on Earth. The study demonstrates that patterns of species occurrence early in an inventory may be inadequate to estimate species richness, but that relatively complete inventories of species-rich arthropod communities are possible if multiple sampling methods and extensive effort are applied.

620 citations

Journal ArticleDOI
TL;DR: A perspective on the Earth BioGenome Project (EBP), a moonshot for biology that aims to sequence, catalog, and characterize the genomes of all of Earth’s eukaryotic biodiversity over a period of 10 years, is presented.
Abstract: Increasing our understanding of Earth’s biodiversity and responsibly stewarding its resources are among the most crucial scientific and social challenges of the new millennium. These challenges require fundamental new knowledge of the organization, evolution, functions, and interactions among millions of the planet’s organisms. Herein, we present a perspective on the Earth BioGenome Project (EBP), a moonshot for biology that aims to sequence, catalog, and characterize the genomes of all of Earth’s eukaryotic biodiversity over a period of 10 years. The outcomes of the EBP will inform a broad range of major issues facing humanity, such as the impact of climate change on biodiversity, the conservation of endangered species and ecosystems, and the preservation and enhancement of ecosystem services. We describe hurdles that the project faces, including data-sharing policies that ensure a permanent, freely available resource for future scientific discovery while respecting access and benefit sharing guidelines of the Nagoya Protocol. We also describe scientific and organizational challenges in executing such an ambitious project, and the structure proposed to achieve the project’s goals. The far-reaching potential benefits of creating an open digital repository of genomic information for life on Earth can be realized only by a coordinated international effort.

560 citations

Journal ArticleDOI
TL;DR: A cladistic viewpoint provides an historical definition of adaptation and an operational ecological test for evolutionary adaptations, and useful to distinguish whether hypotheses about characters identify selection as facilitating: 1) the origin of a character; 2) its maintenance; 3) neither; or 4) both.

412 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
TL;DR: A series of common pitfalls in quantifying and comparing taxon richness are surveyed, including category‐subcategory ratios (species-to-genus and species-toindividual ratios) and rarefaction methods, which allow for meaningful standardization and comparison of datasets.
Abstract: Species richness is a fundamental measurement of community and regional diversity, and it underlies many ecological models and conservation strategies. In spite of its importance, ecologists have not always appreciated the effects of abundance and sampling effort on richness measures and comparisons. We survey a series of common pitfalls in quantifying and comparing taxon richness. These pitfalls can be largely avoided by using accumulation and rarefaction curves, which may be based on either individuals or samples. These taxon sampling curves contain the basic information for valid richness comparisons, including category‐subcategory ratios (species-to-genus and species-toindividual ratios). Rarefaction methods ‐ both sample-based and individual-based ‐ allow for meaningful standardization and comparison of datasets. Standardizing data sets by area or sampling effort may produce very different results compared to standardizing by number of individuals collected, and it is not always clear which measure of diversity is more appropriate. Asymptotic richness estimators provide lower-bound estimates for taxon-rich groups such as tropical arthropods, in which observed richness rarely reaches an asymptote, despite intensive sampling. Recent examples of diversity studies of tropical trees, stream invertebrates, and herbaceous plants emphasize the importance of carefully quantifying species richness using taxon sampling curves.

5,706 citations

Book
13 Sep 2007
TL;DR: A more systematic approach to locating and designing reserves has been evolving and this approach will need to be implemented if a large proportion of today's biodiversity is to exist in a future of increasing numbers of people and their demands on natural resources.
Abstract: The realization of conservation goals requires strategies for managing whole landscapes including areas allocated to both production and protection. Reserves alone are not adequate for nature conservation but they are the cornerstone on which regional strategies are built. Reserves have two main roles. They should sample or represent the biodiversity of each region and they should separate this biodiversity from processes that threaten its persistence. Existing reserve systems throughout the world contain a biased sample of biodiversity, usually that of remote places and other areas that are unsuitable for commercial activities. A more systematic approach to locating and designing reserves has been evolving and this approach will need to be implemented if a large proportion of today's biodiversity is to exist in a future of increasing numbers of people and their demands on natural resources.

4,916 citations

Journal ArticleDOI
TL;DR: Through the use of a number of native commands and a simple but powerful scripting language, TNT allows the user an enormous flexibility in phylogenetic analyses or simulations.

4,548 citations

Journal ArticleDOI
TL;DR: The importance of using 'reference' sites to assess the true richness and composition of species assemblages, to measure ecologically significant ratios between unrelated taxa, toMeasure taxon/sub-taxon (hierarchical) ratios, and to 'calibrate' standardized sampling methods is discussed.
Abstract: Both the magnitude and the urgency of the task of assessing global biodiversity require that we make the most of what we know through the use of estimation and extrapolation. Likewise, future biodiversity inventories need to be designed around the use of effective sampling and estimation procedures, especially for 'hyperdiverse' groups of terrestrial organisms, such as arthropods, nematodes, fungi, and microorganisms. The challenge of estimating patterns of species richness from samples can be separated into (i) the problem of estimating local species richness, and (ii) the problem of estimating the distinctness, or complementarity, of species assemblages. These concepts apply on a wide range of spatial, temporal, and functional scales. Local richness can be estimated by extrapolating species accumulation curves, fitting parametric distributions of relative abundance, or using non-parametric techniques based on the distribution of individuals among species or of species among samples. We present several of these methods and examine their effectiveness for an example data set. We present a simple measure of complementarity, with some biogeographic examples, and outline the difficult problem of estimating complementarity from samples. Finally, we discuss the importance of using 'reference' sites (or sub-sites) to assess the true richness and composition of species assemblages, to measure ecologically significant ratios between unrelated taxa, to measure taxon/sub-taxon (hierarchical) ratios, and to 'calibrate' standardized sampling methods. This information can then be applied to the rapid, approximate assessment of species richness and faunal or floral composition at 'comparative' sites.

4,245 citations