scispace - formally typeset
Search or ask a question
Author

Jonathan B. Losos

Bio: Jonathan B. Losos is an academic researcher from Washington University in St. Louis. The author has contributed to research in topics: Anolis & Adaptive radiation. The author has an hindex of 89, co-authored 274 publications receiving 28673 citations. Previous affiliations of Jonathan B. Losos include University of California, Davis & Avila University.


Papers
More filters
01 Jan 2013
TL;DR: For Caribbean Anolis lizards, diversification on similar Simpsonian landscapes leads to striking convergence of entire faunas on four islands, indicating that the adaptive landscape may give rise to predictable evolutionary patterns in nature, that adaptive peaks may be stable over macroevolutionary time, and that available geographic area influences the ability of lineages to discover new adaptive peaks.

302 citations

Journal ArticleDOI
TL;DR: The process of adaptive radiation—the proliferation of species from a single ancestor and diversification into many ecologically different forms—has been of great interest to evolutionary biologists since Darwin and it is time to synthesize ecological and evolutionary processes.
Abstract: The process of adaptive radiation—the proliferation of species from a single ancestor and diversification into many ecologically different forms—has been of great interest to evolutionary biologists since Darwin. Since the middle of the last century, ecological opportunity has been invoked as a potential key to understanding when and how adaptive radiation occurs. Interest in the topic of ecological opportunity has accelerated as research on adaptive radiation has experienced a resurgence, fueled in part by advances in phylogenetic approaches to studying evolutionary diversification. Nonetheless, what the term actually means, much less how it mechanistically leads to adaptive diversification, is currently debated; whether the term has any predictive value or is a heuristic useful only for post hoc explanation also remains unclear. Recent recognition that evolutionary change can occur rapidly and on a timescale commensurate with ecological processes suggests that it is time to synthesize ecological and evo...

301 citations

Journal ArticleDOI
TL;DR: Historical and ecological studies must be integrated to understand why communities are structured as they are, and examples from Caribbean Anolis assemblages indicate the unique ecological insight a historical perspective can provide.
Abstract: Just as the factors responsible for the origin of an adaptation may not be responsible for its maintenance, the processes currently operating in a community may not have been important in assembling the community. Consequently, historical and ecological studies must be integrated to understand why communities are structured as they are. Examples from Caribbean Anolis assemblages indicate the unique ecological insight a historical perspective can provide. In the Lesser Antilles, phylogenetic analysis indicates that character displacement probably has occurred, but perhaps only once, and that patterns of size dissimilarity across islands result from ecological size assortment subsequent to the evolutionary change in size

282 citations

Journal ArticleDOI
TL;DR: Among species, maximal speed is tightly positively correlated with sprinting performance during both feeding and escape in the field and a negative relationship exists among species between maximal speed and the proportion to which species sprint to their maximal abilities during field escape.
Abstract: We examined the sprinting and jumping capabilities of eight West Indian Anolis species during three natural activities (escape from a predator, feeding, and undisturbed activity). We then compared these field data with maximal performance under optimal laboratory conditions to answer three questions: (1) Has maximal (i.e., laboratory) sprinting and jumping performance coevolved with field performance among species? (2) What proportion of their maximum capabilities do anoles sprint and jump in different ecological contexts? (3) Does a relationship exist between maximal sprinting and jumping ability and the proportion of maximal performance used in these contexts? Among species, maximal speed is tightly positively correlated with sprinting performance during both feeding and escape in the field. Sprinting speed during escape closely matches maximal sprinting ability (i.e., about 90% of maximum performance). By contrast, sprinting performance during undisturbed activity is markedly lower (about 32% of maximum) than maximal sprinting performance. Sprinting ability during feeding is intermediate (about 71% of maximum) between field escape and field undisturbed activity. In contrast to sprinting ability, jumping ability is always substantially less than maximum (about 40% of maximum during feeding and undisturbed activity). A negative relationship exists among species between maximal speed and the proportion to which species sprint to their maximal abilities during field escape.

276 citations

Journal ArticleDOI
TL;DR: Not only is hindlimb length a plastic trait in these lizards, but that this plasticity leads to the production of phenotypes appropriate to particular environments, which potentially could have played an important role in the early stages of the Caribbean anole radiation.
Abstract: Species of Anolis lizards that use broad substrates have long legs, which provide enhanced maximal sprint speed, whereas species that use narrow surfaces have short legs, which permit careful movements. We raised hatchling A. sagrei in terraria provided with only broad or only narrow surfaces. At the end of the experiment, lizards in the broad treatment had relatively longer hindlimbs than lizards in the narrow treatment. These results indicate that not only is hindlimb length a plastic trait in these lizards, but that this plasticity leads to the production of phenotypes appropriate to particular environments. Comparison to hindlimb lengths of other Anolis species indicates that the range of plasticity is limited compared to the diversity shown throughout the anole radiation. Nonetheless, this plasticity potentially could have played an important role in the early stages of the Caribbean anole radiation.

269 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
TL;DR: A new, multifunctional phylogenetics package, phytools, for the R statistical computing environment is presented, with a focus on phylogenetic tree-building in 2.1.
Abstract: Summary 1. Here, I present a new, multifunctional phylogenetics package, phytools, for the R statistical computing environment. 2. The focus of the package is on methods for phylogenetic comparative biology; however, it also includes tools for tree inference, phylogeny input/output, plotting, manipulation and several other tasks. 3. I describe and tabulate the major methods implemented in phytools, and in addition provide some demonstration of its use in the form of two illustrative examples. 4. Finally, I conclude by briefly describing an active web-log that I use to document present and future developments for phytools. I also note other web resources for phylogenetics in the R computational environment.

6,404 citations

Journal ArticleDOI
TL;DR: Analysis of variance of log K for all 121 traits indicated that behavioral traits exhibit lower signal than body size, morphological, life-history, or physiological traits, and this work presents new methods for continuous-valued characters that can be implemented with either phylogenetically independent contrasts or generalized least-squares models.
Abstract: The primary rationale for the use of phylogenetically based statistical methods is that phylogenetic signal, the tendency for related species to resemble each other, is ubiquitous. Whether this assertion is true for a given trait in a given lineage is an empirical question, but general tools for detecting and quantifying phylogenetic signal are inadequately developed. We present new methods for continuous-valued characters that can be implemented with either phylogenetically independent contrasts or generalized least-squares models. First, a simple randomization procedure allows one to test the null hypothesis of no pattern of similarity among relatives. The test demonstrates correct Type I error rate at a nominal α = 0.05 and good power (0.8) for simulated datasets with 20 or more species. Second, we derive a descriptive statistic, K, which allows valid comparisons of the amount of phylogenetic signal across traits and trees. Third, we provide two biologically motivated branch-length transformat...

3,896 citations