scispace - formally typeset
Search or ask a question
Author

Jonathan B. Wittenberg

Bio: Jonathan B. Wittenberg is an academic researcher from Albert Einstein College of Medicine. The author has contributed to research in topics: Heme & Hemoglobin. The author has an hindex of 44, co-authored 80 publications receiving 5351 citations. Previous affiliations of Jonathan B. Wittenberg include Marine Biological Laboratory & Yeshiva University.
Topics: Heme, Hemoglobin, Oxygen, Myoglobin, Leghemoglobin


Papers
More filters
Journal ArticleDOI
TL;DR: The heart and those striated muscles that contract for long periods, having available almost limitless oxygen, operate in sustained steady states of low sarcoplasmic oxygen pressure that resist change in response to changing muscle work or oxygen supply.
Abstract: The heart and those striated muscles that contract for long periods, having available almost limitless oxygen, operate in sustained steady states of low sarcoplasmic oxygen pressure that resist change in response to changing muscle work or oxygen supply. Most of the oxygen pressure drop from the erythrocyte to the mitochondrion occurs across the capillary wall. Within the sarcoplasm, myoglobin, a mobile carrier of oxygen, is developed in response to mitochondrial demand and augments the flow of oxygen to the mitochondria. Myoglobin-facilitated oxygen diffusion, perhaps by virtue of reduction of dimensionality of diffusion from three dimensions towards two dimensions in the narrow spaces available between mitochondria, is rapid relative to other parameters of cell respiration. Consequently, intracellular gradients of oxygen pressure are shallow, and sarcoplasmic oxygen pressure is nearly the same everywhere. Sarcoplasmic oxygen pressure, buffered near 0.33 kPa (2.5 torr; equivalent to approximately 4 micro mol l(-1) oxygen) by equilibrium with myoglobin, falls close to the operational K(m) of cytochrome oxidase for oxygen, and any small increment in sarcoplasmic oxygen pressure will be countered by increased oxygen utilization. The concentration of nitric oxide within the myocyte results from a balance of endogenous synthesis and removal by oxymyoglobin-catalyzed dioxygenation to the innocuous nitrate. Oxymyoglobin, by controlling sarcoplasmic nitric oxide concentration, helps assure the steady state in which inflow of oxygen into the myocyte equals the rate of oxygen consumption.

470 citations

Journal ArticleDOI
TL;DR: Crystal structures show that trHb tertiary structure is based on a 2-on-2 -hel-ical sandwich, which represents an unprecedented editing of the highly conserved globin fold, and may provide a path for ligand diffusion to the heme.

380 citations

Journal ArticleDOI
TL;DR: It is reported that disruption of M. bovis bacillus Calmette–Guérin glbN caused a dramatic reduction in the NO-consuming activity of stationary phase cells, and that activity could be restored fully by complementing knockout cells withglbN, and an NO-metabolizing activity in M. tuberculosis or M.bovis is demonstrated.
Abstract: Mycobacterium tuberculosis, the causative agent of human tuberculosis, and Mycobacterium bovis each express two genes, glbN and glbO, encoding distantly related truncated hemoglobins (trHbs), trHbN and trHbO, respectively. Here we report that disruption of M. bovis bacillus Calmette-Guerin glbN caused a dramatic reduction in the NO-consuming activity of stationary phase cells, and that activity could be restored fully by complementing knockout cells with glbN. Aerobic respiration of knockout cells was inhibited markedly by NO in comparison to that of wild-type cells, indicating a protective function for trHbN. TyrB10, which is highly conserved in trHbs and interacts with the bound oxygen, was found essential for NO consumption. Titration of oxygenated trHbN (trHbN.O(2)) with NO resulted in stoichiometric oxidation of the protein with nitrate as the major product of the reaction. The second-order rate constant for the reaction between trHbN.O(2) and NO at 23 degrees C was 745 microM(-1).s(-1), demonstrating that trHbN detoxifies NO 20-fold more rapidly than myoglobin. These results establish a role for a trHb and demonstrate an NO-metabolizing activity in M. tuberculosis or M. bovis. trHbN thus might play an important role in persistence of mycobacterial infection by virtue of trHbN's ability to detoxify NO.

268 citations

Journal ArticleDOI
TL;DR: The results suggest that, physiologically, the primary role of HbN may be to protect the bacilli against reactive nitrogen species produced by the host macrophage.
Abstract: Two putative hemoglobin genes, glbN and glbO, were recently discovered in the complete genome sequence of Mycobacterium tuberculosis H37Rv. Here, we show that the glbN gene encodes a dimeric hemoglobin (HbN) that binds oxygen cooperatively with very high affinity (P50 = 0.013 mmHg at 20°C) because of a fast combination (25 μM−1⋅s−1) and a slow dissociation (0.2 s−1) rate. Resonance Raman spectroscopy and ligand association/dissociation kinetic measurements, along with mutagenesis studies, reveal that the stabilization of the bound oxygen is achieved through a tyrosine at the B10 position in the distal pocket of the heme with a conformation that is unique among the globins. Physiological studies performed with Mycobacterium bovis bacillus Calmette–Guerin demonstrate that the expression of HbN is greatly enhanced during the stationary phase in aerobic cultures but not under conditions of limited oxygen availability. The results suggest that, physiologically, the primary role of HbN may be to protect the bacilli against reactive nitrogen species produced by the host macrophage.

211 citations

Journal ArticleDOI
TL;DR: It is deduced that oxyleghemoglobin and other oxygenbinding proteins exert their effects by facilitating the diffusion of oxygen through a thin layer of solution, the "unstirred layer," surrounding the bacteroids, which results in the "effective" oxygen uptake which supports nitrogenase activity.

209 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The authors present here a classification and structure/function analysis of native metal sites based on these functions, and the coordination chemistry of metalloprotein sites and the unique properties of a protein as a ligand are briefly summarized.
Abstract: For present purposes, a protein-bound metal site consists of one or more metal ions and all protein side chain and exogenous bridging and terminal ligands that define the first coordination sphere of each metal ion. Such sites can be classified into five basic types with the indicated functions: (1) structural -- configuration (in part) of protein tertiary and/or quaternary structure; (2) storage -- uptake, binding, and release of metals in soluble form: (3) electron transfer -- uptake, release, and storage of electrons; (4) dioxygen binding -- metal-O{sub 2} coordination and decoordination; and (5) catalytic -- substrate binding, activation, and turnover. The authors present here a classification and structure/function analysis of native metal sites based on these functions, where 5 is an extensive class subdivided by the type of reaction catalyzed. Within this purview, coverage of the various site types is extensive, but not exhaustive. The purpose of this exposition is to present examples of all types of sites and to relate, insofar as is currently feasible, the structure and function of selected types. The authors largely confine their considerations to the sites themselves, with due recognition that these site features are coupled to protein structure at all levels. In themore » next section, the coordination chemistry of metalloprotein sites and the unique properties of a protein as a ligand are briefly summarized. Structure/function relationships are systematically explored and tabulations of structurally defined sites presented. Finally, future directions in bioinorganic research in the context of metal site chemistry are considered. 620 refs.« less

2,242 citations

Journal ArticleDOI
TL;DR: It is concluded that the MPO system plays an important role in the microbicidal activity of phagocytes and the role of theMPO system in tissue injury.
Abstract: Neutrophilic polymorphonuclear leukocytes (neutrophils) are highly specialized for their primary function, the phagocytosis and destruction of microorganisms. When coated with opsonins (generally complement and/or antibody), microorganisms bind to specific receptors on the surface of the phagocyte and invagination of the cell membrane occurs with the incorporation of the microorganism into an intracellular phagosome. There follows a burst of oxygen consumption, and much, if not all, of the extra oxygen consumed is converted to highly reactive oxygen species. In addition, the cytoplasmic granules discharge their contents into the phagosome, and death of the ingested microorganism soon follows. Among the antimicrobial systems formed in the phagosome is one consisting of myeloperoxidase (MPO), released into the phagosome during the degranulation process, hydrogen peroxide (H2O2), formed by the respiratory burst and a halide, particularly chloride. The initial product of the MPO-H2O2-chloride system is hypochlorous acid, and subsequent formation of chlorine, chloramines, hydroxyl radicals, singlet oxygen, and ozone has been proposed. These same toxic agents can be released to the outside of the cell, where they may attack normal tissue and thus contribute to the pathogenesis of disease. This review will consider the potential sources of H2O2 for the MPO-H2O2-halide system; the toxic products of the MPO system; the evidence for MPO involvement in the microbicidal activity of neutrophils; the involvement of MPO-independent antimicrobial systems; and the role of the MPO system in tissue injury. It is concluded that the MPO system plays an important role in the microbicidal activity of phagocytes.

2,070 citations

Journal ArticleDOI
TL;DR: The latest paradigms of applicability of these beneficial rhizobacteria in different agro-ecosystems have been presented comprehensively under both normal and stress conditions to highlight the recent trends with the aim to develop future insights.

1,630 citations

Journal ArticleDOI
TL;DR: This work has shown the ability to characterize the sugar moiety through the mechanism of “sugar-by-sugar interactions” and has suggested a number of mechanisms that could be responsible for the sweetness of the sucrose molecule.
Abstract: ion from the Sugar Moiety Wendy Knapp Pogozelski† and Thomas D. Tullius*,‡ Department of Chemistry, State University of New York at Geneseo, Geneseo, New York 14454, and Department of Chemistry, Boston University, Boston, Massachusetts 02215 Received August 27, 1997 (Revised Manuscript Received February 26, 1998)

969 citations