scispace - formally typeset
Search or ask a question
Author

Jonathan D. Nardozzi

Bio: Jonathan D. Nardozzi is an academic researcher from Brigham and Women's Hospital. The author has contributed to research in topics: LRRK2 & Importin. The author has an hindex of 10, co-authored 11 publications receiving 770 citations. Previous affiliations of Jonathan D. Nardozzi include Skidmore College & State University of New York Upstate Medical University.

Papers
More filters
Journal ArticleDOI
TL;DR: This review will recapitulate clue findings in the field and provide some general rules on how reversible phosphorylation can affect the nuclear-cytoplasmic localization of substrates.
Abstract: Phosphorylation is the most common and pleiotropic modification in biology, which plays a vital role in regulating and finely tuning a multitude of biological pathways. Transport across the nuclear envelope is also an essential cellular function and is intimately linked to many degeneration processes that lead to disease. It is therefore not surprising that phosphorylation of cargos trafficking between the cytoplasm and nucleus is emerging as an important step to regulate nuclear availability, which directly affects gene expression, cell growth and proliferation. However, the literature on phosphorylation of nucleocytoplasmic trafficking cargos is often confusing. Phosphorylation, and its mirror process dephosphorylation, has been shown to have opposite and often contradictory effects on the ability of cargos to be transported across the nuclear envelope. Without a clear connection between attachment of a phosphate moiety and biological response, it is difficult to fully understand and predict how phosphorylation regulates nucleocytoplasmic trafficking. In this review, we will recapitulate clue findings in the field and provide some general rules on how reversible phosphorylation can affect the nuclear-cytoplasmic localization of substrates. This is only now beginning to emerge as a key regulatory step in biology.

224 citations

Journal ArticleDOI
TL;DR: It is established that stimulation of specific Toll-like receptors results in a complex biochemical activation of endogenous L RRK2, with early phosphorylation of LRRK2 preceding its dimerization and membrane translocation and the importance of the kinase domain in the regulation of autophagy is suggested.
Abstract: Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial and idiopathic Parkinson's disease. However, the mechanisms for activating its physiological function are not known, hindering identification of the biological role of endogenous LRRK2. The recent discovery that LRRK2 is highly expressed in cells of the innate immune system and genetic association is a risk factor for autoimmune disorders implies an important role for LRRK2 in pathology outside of the central nervous system. Thus, an examination of endogenous LRRK2 in immune cells could provide insight into the protein's function. Here, we establish that stimulation of specific Toll-like receptors results in a complex biochemical activation of endogenous LRRK2, with early phosphorylation of LRRK2 preceding its dimerization and membrane translocation. Membrane-associated LRRK2 co-localized to autophagosome membranes following either TLR4 stimulation or mTOR inhibition with rapamycin. Silencing of endogenous LRRK2 expression resulted in deficits in the induction of autophagy and clearance of a well-described macroautophagy substrate, demonstrating the critical role of endogenous LRRK2 in regulating autophagy. Inhibition of LRRK2 kinase activity also reduced autophagic degradation and suggested the importance of the kinase domain in the regulation of autophagy. Our results demonstrate a well-orchestrated series of biochemical events involved in the activation of LRRK2 important to its physiological function. With similarities observed across multiple cell types and stimuli, these findings are likely relevant in all cell types that natively express endogenous LRRK2, and provide insights into LRRK2 function and its role in human disease.

198 citations

Journal ArticleDOI
TL;DR: This review will focus on how PD-associated mutations in LRRK2 could potentially alter microglial biology with respect to neuronally secreted αSyn, resulting in cell dysfunction and neurodegeneration.

112 citations

Journal ArticleDOI
TL;DR: Mutation of LRRK2 induces modest but significant changes in lysosomal morphology and acidification, and decreased basal autophagic flux when compared to WT neurons, which demonstrate a critical and disease-relevant influence of native neuronal L RRK2 kinase activity on lysOSome function and α-synuclein homeostasis.

103 citations

Journal ArticleDOI
TL;DR: It is proposed that importin alpha5 binds between two STAT1 monomers, with two major binding determinants in the SH2 and DNA binding domains, and supported by the observation that a 38-mer DNA oligonucleotide containing two tandem cfosM67 promoters can displace importinalpha5 from pSTAT1.

72 citations


Cited by
More filters
Journal ArticleDOI
16 Jan 2014-Nature
TL;DR: Recent advances have revealed how the organelle's behaviour has evolved to allow the accurate transmission of its genome and to become responsive to the needs of the cell and its own dysfunction.
Abstract: Mitochondria are one of the major ancient endomembrane systems in eukaryotic cells. Owing to their ability to produce ATP through respiration, they became a driving force in evolution. As an essential step in the process of eukaryotic evolution, the size of the mitochondrial chromosome was drastically reduced, and the behaviour of mitochondria within eukaryotic cells radically changed. Recent advances have revealed how the organelle's behaviour has evolved to allow the accurate transmission of its genome and to become responsive to the needs of the cell and its own dysfunction.

1,229 citations

Journal ArticleDOI
TL;DR: The diversity of microglia phenotypes and their responses in health, aging, and disease are described and treatment options that modulate microglial phenotypes are discussed.
Abstract: As the immune-competent cells of the brain, microglia play an increasingly important role in maintaining normal brain function. They invade the brain early in development, transform into a highly ramified phenotype, and constantly screen their environment. Microglia are activated by any type of pathologic event or change in brain homeostasis. This activation process is highly diverse and depends on the context and type of the stressor or pathology. Microglia can strongly influence the pathologic outcome or response to a stressor due to the release of a plethora of substances, including cytokines, chemokines, and growth factors. They are the professional phagocytes of the brain and help orchestrate the immunological response by interacting with infiltrating immune cells. We describe here the diversity of microglia phenotypes and their responses in health, aging, and disease. We also review the current literature about the impact of lifestyle on microglia responses and discuss treatment options that modulate microglial phenotypes.

900 citations

Journal ArticleDOI
29 Jan 2016-eLife
TL;DR: This work employs a combination of phosphoproteomics, genetics, and pharmacology to unambiguously identify a subset of Rab GTPases as key LRRK2 substrates and a novel regulatory mechanism of Rabs that connects them to PD.
Abstract: Parkinson’s disease is a degenerative disorder of the nervous system that affects approximately 1% of the elderly population. Mutations in the gene that encodes an enzyme known as LRRK2 are the most common causes of the inherited form of the disease. Such mutations generally increase the activity of LRRK2 and so drug companies have developed drugs that inhibit LRRK2 to prevent or delay the progression of Parkinson’s disease. However, it was not known what role LRRK2 plays in cells, and why its over-activation is harmful. Steger et al. used a 'proteomics' approach to find other proteins that are regulated by LRRK2. The experiments tested a set of newly developed LRRK2 inhibitors in cells and brain tissue from mice. The mice had mutations in the gene encoding LRRK2 that are often found in human patients with Parkinson’s disease. The experiments show that LRRK2 targets some proteins belonging to the Rab GTPase family, which are involved in transporting molecules and other 'cargoes' around cells. Several Rab GTPases are less active in the mutant mice, which interferes with the ability of these proteins to correctly direct the movement of cargo around the cell. Steger et al.’s findings will help to advance the development of new therapies for Parkinson’s disease. The next challenges are to identify how altering the activity of Rab GTPases leads to degeneration of the nervous system and how LRRK2 inhibitors may slow down these processes.

745 citations

Journal ArticleDOI
TL;DR: Recent research on the roles of MAPK signaling pathways in human diseases, with a focus on cancer and neurodegenerative conditions is summarized.
Abstract: The mitogen-activated protein kinases (MAPKs) in mammals include c-Jun NH2-terminal kinase (JNK), p38 MAPK, and extracellular signal-regulated kinase (ERK). These enzymes are serine-threonine protein kinases that regulate various cellular activities including proliferation, differentiation, apoptosis or survival, inflammation, and innate immunity. The compromised MAPK signaling pathways contribute to the pathology of diverse human diseases including cancer and neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The JNK and p38 MAPK signaling pathways are activated by various types of cellular stress such as oxidative, genotoxic, and osmotic stress as well as by proinflammatory cytokines such as tumor necrosis factor-α and interleukin 1β. The Ras-Raf-MEK-ERK signaling pathway plays a key role in cancer development through the stimulation of cell proliferation and metastasis. The p38 MAPK pathway contributes to neuroinflammation mediated by glial cells including microglia and astrocytes, and it has also been associated with anticancer drug resistance in colon and liver cancer. We here summarize recent research on the roles of MAPK signaling pathways in human diseases, with a focus on cancer and neurodegenerative conditions.

712 citations

Journal ArticleDOI
TL;DR: Which forms of cell death occur in stroke and Alzheimer's disease are reassess, and why it has been so difficult to pinpoint the type of neuronal death involved is discussed.
Abstract: Neuronal cell death occurs extensively during development and pathology, where it is especially important because of the limited capacity of adult neurons to proliferate or be replaced. The concept of cell death used to be simple as there were just two or three types, so we just had to work out which type was involved in our particular pathology and then block it. However, we now know that there are at least a dozen ways for neurons to die, that blocking a particular mechanism of cell death may not prevent the cell from dying, and that non-neuronal cells also contribute to neuronal death. We review here the mechanisms of neuronal death by intrinsic and extrinsic apoptosis, oncosis, necroptosis, parthanatos, ferroptosis, sarmoptosis, autophagic cell death, autosis, autolysis, paraptosis, pyroptosis, phagoptosis, and mitochondrial permeability transition. We next explore the mechanisms of neuronal death during development, and those induced by axotomy, aberrant cell-cycle reentry, glutamate (excitoxicity and oxytosis), loss of connected neurons, aggregated proteins and the unfolded protein response, oxidants, inflammation, and microglia. We then reassess which forms of cell death occur in stroke and Alzheimer's disease, two of the most important pathologies involving neuronal cell death. We also discuss why it has been so difficult to pinpoint the type of neuronal death involved, if and why the mechanism of neuronal death matters, the molecular overlap and interplay between death subroutines, and the therapeutic implications of these multiple overlapping forms of neuronal death.

650 citations