scispace - formally typeset
Search or ask a question
Author

Jonathan Daniel

Bio: Jonathan Daniel is an academic researcher from University of Bordeaux. The author has contributed to research in topics: Two-photon absorption & Nanocarriers. The author has an hindex of 10, co-authored 24 publications receiving 334 citations. Previous affiliations of Jonathan Daniel include Centre national de la recherche scientifique.

Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that poly(DL-lactide-co-glycolide) (PLGA) acidic nanoparticles (aNP) restore impaired lysosomal function in a series of toxin and genetic cellular models of PD, i.e. ATP13A2-mutant or depleted cells or glucocerebrosidase (GBA)-mutant cells, as well as in a genetic model of lysOSomal-related myopathy.
Abstract: Lysosomal impairment causes lysosomal storage disorders (LSD) and is involved in pathogenesis of neurodegenerative diseases, notably Parkinson disease (PD). Strategies enhancing or restoring lysosomal-mediated degradation thus appear as tantalizing disease-modifying therapeutics. Here we demonstrate that poly(DL-lactide-co-glycolide) (PLGA) acidic nanoparticles (aNP) restore impaired lysosomal function in a series of toxin and genetic cellular models of PD, i.e. ATP13A2-mutant or depleted cells or glucocerebrosidase (GBA)-mutant cells, as well as in a genetic model of lysosomal-related myopathy. We show that PLGA-aNP are transported to the lysosome within 24 h, lower lysosomal pH and rescue chloroquine (CQ)-induced toxicity. Re-acidification of defective lysosomes following PLGA-aNP treatment restores lysosomal function in different pathological contexts. Finally, our results show that PLGA-aNP may be detected after intracerebral injection in neurons and attenuate PD-related neurodegeneration in v...

135 citations

Journal ArticleDOI
TL;DR: An efficacious strategy to obtain photostable Hyper-bright near-IR emitting Fluorescent Organic Nanoparticles (HIFONS) is reported, emerging as highly promising tools for applications in bionanotechnologies.
Abstract: An efficacious strategy to obtain photostable Hyper-bright near-IR emitting Fluorescent Organic Nanoparticles (HIFONS) is reported. These HIFONs show excellent chemical and colloidal stability and retain their pristine nanostructure and brightness after incubation in cellular environments. They can be identified at the single particles level with a wide-field microscope, emerging as highly promising tools for applications in bionanotechnologies.

63 citations

Journal ArticleDOI
TL;DR: It is reported that, concurrent with classical ThT-positive products, fibrillization in saline also gives rise to polymorphs invisible to ThT (τ−), and the generation of τ− fibril polymorphs is stochastic and can skew the apparent fibrillsization kinetics revealed by ThT.
Abstract: The conformational strain diversity characterizing α-synuclein (α-syn) amyloid fibrils is thought to determine the different clinical presentations of neurodegenerative diseases underpinned by a synucleinopathy. Experimentally, various α-syn fibril polymorphs have been obtained from distinct fibrillization conditions by altering the medium constituents and were selected by amyloid monitoring using the probe thioflavin T (ThT). We report that, concurrent with classical ThT-positive products, fibrillization in saline also gives rise to polymorphs invisible to ThT (τ-). The generation of τ- fibril polymorphs is stochastic and can skew the apparent fibrillization kinetics revealed by ThT. Their emergence has thus been ignored so far or mistaken for fibrillization inhibitions/failures. They present a yet undescribed atomic organization and show an exacerbated propensity toward self-replication in cortical neurons, and in living mice, their injection into the substantia nigra pars compacta triggers a synucleinopathy that spreads toward the dorsal striatum, the nucleus accumbens, and the insular cortex.

39 citations

Journal ArticleDOI
TL;DR: Suzuki and Miyaura crosscoupling reaction with a new boron reagent has been used to conveniently and efficiently synthetize a dipolar chromophore having an elongated π-conjugated system (i.e., bithiophene based), which displays a red-shifted emission while maintaining fluorescence as discussed by the authors.

36 citations

Journal ArticleDOI
TL;DR: In this series, highly fluorescent dye 1 based on a spirofluorene core and triphenylamine end groups connected via thiophene moieties shows the most promising and intriguing properties.
Abstract: A series of symmetric fluorescent dyes built from a spirofluorene core bearing electroactive end groups and having different conjugated linkers were prepared with a view to their use as building blocks for the preparation of electrochemiluminescent (ECL) dyes and nanoparticles. Their electrochemical, spectroelectrochemical, and ECL properties were first investigated in solution, and structure/activity relationships were derived. The electrochemical and ECL properties show drastic variation that could be tuned by means of the nature of the π-conjugated system, the end groups, and the core. In this series, highly fluorescent dye 1 based on a spirofluorene core and triphenylamine end groups connected via thiophene moieties shows the most promising and intriguing properties. Dye 1 is reversibly oxidized in three well-separated steps and generates a very intense and large ECL signal. Its ECL efficiency is 4.5 times higher than that of the reference compound [Ru(bpy)3 ](2+) (bpy=2,2'-bipyridine). This remarkably high efficiency is due to the very good stability of the higher oxidized states and it makes 1 a very bright organic ECL luminophore. In addition, thanks to its molecular structure, this dye retains fluorescence after nanoprecipitation in water, which leads to fluorescent organic nanoparticles (FONs). The redox behavior of these FONs shows oxidation waves consistent with the initial molecular species. Finally, ECL from FONs made of 1 was recorded in water and strong ECL nanoemitters are thus obtained.

26 citations


Cited by
More filters
Journal Article
TL;DR: In this article, a class of π;-conjugated compounds that exhibit large δ (as high as 1, 250 × 10−50 cm4 s per photon) and enhanced two-photon sensitivity relative to ultraviolet initiators were developed and used to demonstrate a scheme for three-dimensional data storage which permits fluorescent and refractive read-out, and the fabrication of 3D micro-optical and micromechanical structures, including photonic-bandgap-type structures.
Abstract: Two-photon excitation provides a means of activating chemical or physical processes with high spatial resolution in three dimensions and has made possible the development of three-dimensional fluorescence imaging, optical data storage, and lithographic microfabrication. These applications take advantage of the fact that the two-photon absorption probability depends quadratically on intensity, so under tight-focusing conditions, the absorption is confined at the focus to a volume of order λ3 (where λ is the laser wavelength). Any subsequent process, such as fluorescence or a photoinduced chemical reaction, is also localized in this small volume. Although three-dimensional data storage and microfabrication have been illustrated using two-photon-initiated polymerization of resins incorporating conventional ultraviolet-absorbing initiators, such photopolymer systems exhibit low photosensitivity as the initiators have small two-photon absorption cross-sections (δ). Consequently, this approach requires high laser power, and its widespread use remains impractical. Here we report on a class of π;-conjugated compounds that exhibit large δ (as high as 1, 250 × 10−50 cm4 s per photon) and enhanced two-photon sensitivity relative to ultraviolet initiators. Two-photon excitable resins based on these new initiators have been developed and used to demonstrate a scheme for three-dimensional data storage which permits fluorescent and refractive read-out, and the fabrication of three-dimensional micro-optical and micromechanical structures, including photonic-bandgap-type structures.

1,833 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.

1,129 citations

Journal ArticleDOI
01 Apr 2016-Small
TL;DR: The strategies for synthesis of dye-loaded polymer NPs by emulsion polymerization and assembly of pre-formed polymers are described, and the resulting NPs now surpass the brightness of QDs by ≈10-fold for a comparable size, and have started reaching the level of the brightest conjugated polymer NPS.
Abstract: Speed, resolution and sensitivity of today's fluorescence bioimaging can be drastically improved by fluorescent nanoparticles (NPs) that are many-fold brighter than organic dyes and fluorescent proteins. While the field is currently dominated by inorganic NPs, notably quantum dots (QDs), fluorescent polymer NPs encapsulating large quantities of dyes (dye-loaded NPs) have emerged recently as an attractive alternative. These new nanomaterials, inspired from the fields of polymeric drug delivery vehicles and advanced fluorophores, can combine superior brightness with biodegradability and low toxicity. Here, we describe the strategies for synthesis of dye-loaded polymer NPs by emulsion polymerization and assembly of pre-formed polymers. Superior brightness requires strong dye loading without aggregation-caused quenching (ACQ). Only recently several strategies of dye design were proposed to overcome ACQ in polymer NPs: aggregation induced emission (AIE), dye modification with bulky side groups and use of bulky hydrophobic counterions. The resulting NPs now surpass the brightness of QDs by ≈10-fold for a comparable size, and have started reaching the level of the brightest conjugated polymer NPs. Other properties, notably photostability, color, blinking, as well as particle size and surface chemistry are also systematically analyzed. Finally, major and emerging applications of dye-loaded NPs for in vitro and in vivo imaging are reviewed.

460 citations

Journal Article
TL;DR: It was found that chirality plays a significant role in the mechanism of contrast generation, and it is also shown that SHIM is highly sensitive to membrane potential, with a depolarization of 25 mV resulting in an approximately twofold loss of signal intensity.
Abstract: By adapting a laser scanning microscope with a titanium sapphire femtosecond pulsed laser and transmission optics, we are able to produce live cell images based on the nonlinear optical phenomenon of second harmonic generation (SHG). Second harmonic imaging (SHIM) is an ideal method for probing membranes of living cells because it offers the high resolution of nonlinear optical microscopy with the potential for near-total avoidance of photobleaching and phototoxicity. The technique has been implemented on three cell lines labeled with membrane-staining dyes that have large nonlinear optical coefficients. The images can be obtained within physiologically relevant time scales. Both achiral and chiral dyes were used to compare image formation for the case of single- and double-leaflet staining, and it was found that chirality plays a significant role in the mechanism of contrast generation. It is also shown that SHIM is highly sensitive to membrane potential, with a depolarization of 25 mV resulting in an approximately twofold loss of signal intensity.

456 citations

Journal ArticleDOI
TL;DR: The unique vulnerability of neurons to persistent low level lysosomal dysfunction is discussed and recent clinical and experimental studies that link dysfunction of the v-ATPase complex to neurodegenerative diseases across the age spectrum are reviewed.

317 citations